保捱科技网
您的当前位置:首页圆的重要定理

圆的重要定理

来源:保捱科技网


切线长定理、弦切角定理、切割线定理、相交弦定理

以及与圆有关的比例线段

【课前测试】

1. PT切⊙O于T,CT为直径,D为OC上一点,直线PD交⊙O于B和A,B在线段PD上,若CD=2,AD=3,BD=4,则PB等于( )

A. 20 B. 10 C. 5 D.

【知识点回顾】

1.切线长概念

切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。 2.切线长定理

对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。

3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。

直线AB切⊙O于P,PC、PD为弦,图中几个弦切角呢?(四个) 4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。

5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。

6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。 7.与圆有关的比例线段 定理 图形 已知 结论 证法 相交弦定⊙O中,AB、CD为弦,交PA·PB=PC·PD. 连结AC、BD,证:理 于P. △APC∽△DPB.

相交弦定理的推论

⊙O中,AB为直径,CD⊥ABPC=PA·PB. 于P.

2

用相交弦定理.

1

切割线定理 ⊙O中,PT切⊙O于T,PT=PA·PB 割线PB交⊙O于A

2

连结TA、TB,证:△PTB∽△PAT

切割线定理推论

PB、PD为⊙O的两条割线,PA·PB=PC·PD 交⊙O于A、C

过P作PT切⊙O于T,用两次切割线定理

圆幂定理

⊙O中,割线PB交⊙O于P'C·P'D=r-延长P'O交⊙O于M,延

2

A,CD为弦 OP' 长OP'交⊙O于N,用相交

22

PA·PB=OP-r 弦定理证;过P作切线用r为⊙O的半径 切割线定理勾股定理证

2

8.圆幂定理:过一定点P向⊙O作任一直线,交⊙O于两点,则自定点P到两交点的两条线段之积为常数|

|(R为圆半径),因为叫做点对于⊙O的幂,所以将上述定理统称为圆幂定理。

【典型例题】

例1.如图1,正方形ABCD的边长为1,以BC为直径。在正方形内作半圆O,过A作半圆切线,切点为F,交CD于E,求DE:AE的值。

图1

解:由切线长定理知:AF=AB=1,EF=CE 设CE为x,在Rt△ADE中,由勾股定理 ∴

例2.⊙O中的两条弦AB与CD相交于E,若AE=6cm,BE=2cm,CD=7cm,那么CE=_________cm。

2

图2

解:由相交弦定理,得 AE·BE=CE·DE

∵AE=6cm,BE=2cm,CD=7cm, , ∴

即 ∴CE=3cm或CE=4cm。 故应填3或4。

点拨:相交弦定理是较重要定理,结果要注意两种情况的取舍。

例3.已知PA是圆的切线,PCB是圆的割线,则 解:∵∠P=∠P ∠PAC=∠B, ∴△PAC∽△PBA, ∴

________。

∴。

又∵PA是圆的切线,PCB是圆的割线,由切割线定理,得 ∴

即 , 故应填PC。

点拨:利用相似得出比例关系式后要注意变形,推出所需结论。

【课间谜语】

经典谜语1:生在娘家青之绿叶,生在婆家黄皮寡瘦。 不提便罢,一提泪水连连。

经典谜语2:溪壑分离,红尘游戏,真何趣?名利犹虚,后事终难继。

例4.如图3,P是⊙O外一点,PC切⊙O于点C,PAB是⊙O的割线,交⊙O于A、B两点,如果PA:PB=1:4,PC=12cm,⊙O的半径为10cm,则圆心O到AB的距离是___________cm。

3

解:∵PC是⊙O的切线,PAB是⊙O的割线,且PA:PB=1:4 ∴PB=4PA 又∵PC=12cm 由切割线定理,得 ∴ ∴

∴PB=4×6=24(cm) ∴AB=24-6=18(cm)

设圆心O到AB距离为d cm, 由勾股定理,得

故应填。

例5.如图4,AB为⊙O的直径,过B点作⊙O的切线BC,OC交⊙O于点E,AE的延长线交BC于点D,(1)求证:;(2)若AB=BC=2厘米,求CE、CD的长。

点悟:要证 证明:(1)连结BE

,即要证△CED∽△CBE。

(2)

又∵

∴厘米。

点拨:有切线,并需寻找角的关系时常添辅助线,为利用弦切角定理创造条件。

例6.如图5,AB为⊙O的直径,弦CD∥AB,AE切⊙O于A,交CD的延长线于E。

4

图5

求证: 证明:连结BD, ∵AE切⊙O于A, ∴∠EAD=∠ABD

∵AE⊥AB,又AB∥CD, ∴AE⊥CD

∵AB为⊙O的直径 ∴∠ADB=90°

∴∠E=∠ADB=90° ∴△ADE∽△BAD ∴ ∴

∵CD∥AB

∴AD=BC,∴

例7.如图6,PA、PC切⊙O于A、C,PDB为割线。求证:AD·BC=CD·AB

图6

点悟:由结论AD·BC=CD·AB得 证明:∵PA切⊙O于A, ∴∠PAD=∠PBA 又∠APD=∠BPA, ∴△PAD∽△PBA ∴

同理可证△PCD∽△PBC ∴

∵PA、PC分别切⊙O于A、C ∴PA=PC

∴AD·BC=DC·AB

例8.如图7,在直角三角形ABC中,∠A=90°,以AB边为直径作⊙O,交斜边BC于点D,过D点作⊙O的切线交

5

,显然要证△PAD∽△PBA和△PCD∽△PBC

AC于E。

图7

求证:BC=2OE。

点悟:由要证结论易想到应证OE是△ABC的中位线。而OA=OB,只须证AE=CE。 证明:连结OD。 ∵AC⊥AB,AB为直径

∴AC为⊙O的切线,又DE切⊙O于D ∴EA=ED,OD⊥DE

∵OB=OD,∴∠B=∠ODB

在Rt△ABC中,∠C=90°-∠B ∵∠ODE=90° ∴

∴∠C=∠EDC ∴ED=EC ∴AE=EC

∴OE是△ABC的中位线 ∴BC=2OE

例9.如图8,在正方形ABCD中,AB=1,是以点B为圆心,AB长为半径的圆的一段弧。点E是边AD上的任

意一点(点E与点A、D不重合),过E作所在圆的切线,交边DC于点F,G为切点。 当∠DEF=45°时,求证点G为线段EF的中点;

图8

解:由∠DEF=45°,得

, ∴∠DFE=∠DEF ∴DE=DF 又∵AD=DC ∴AE=FC

因为AB是圆B的半径,AD⊥AB,所以AD切圆B于点A;同理,CD切圆B于点C。 又因为EF切圆B于点G,所以AE=EG,FC=FG。 因此EG=FG,即点G为线段EF的中点。

【经典练习】(答题时间:40分钟)

6

一、选择题

1.已知:PA、PB切⊙O于点A、B,连结AB,若AB=8,弦AB的弦心距3,则PA=( ) A. B. C. 5 D. 8 2.下列图形一定有内切圆的是( )

A.平行四边形 B.矩形 C.菱形 D.梯形

3.已知:如图1直线MN与⊙O相切于C,AB为直径,∠CAB=40°,则∠MCA的度数( )

图1

A. 50° B. 40° C. 60° D. 55° 4.圆内两弦相交,一弦长8cm且被交点平分,另一弦被交点分为1:4,则另一弦长为( ) A. 8cm B. 10cm C. 12cm D. 16cm 5.在△ABC中,D是BC边上的点,AD的交点,那么DE长等于( ) A.

B.

,BD=3cm,DC=4cm,如果E是AD的延长线与△ABC的外接圆

C. D.

二、填空题

7. AB、CD是⊙O切线,AB∥CD,EF是⊙O的切线,它和AB、CD分别交于E、F,则∠EOF=_____________度。 8.已知:⊙O和不在⊙O上的一点P,过P的直线交⊙O于A、B两点,若PA·PB=24,OP=5,则⊙O的半径长为_____________。

9.若PA为⊙O的切线,A为切点,PBC割线交⊙O于B、C,若BC=20,

,则PC的长为_____________。

10.正△ABC内接于⊙O,M、N分别为AB、AC中点,延长MN交⊙O于点D,连结BD交AC于P,则_____________。

【课后自测】

11.如图2,△ABC中,AC=2cm,周长为8cm,F、K、N是△ABC与内切圆的切点,DE切⊙O于点M,且DE∥AC,求DE的长。

图2

12.如图3,已知P为⊙O的直径AB延长线上一点,PC切⊙O于C,CD⊥AB于D,求证:CB平分∠DCP。

7

图3

13.如图4,已知AD为⊙O的直径,AB是⊙O的切线,过B的割线BMN交AD的延长线于C,且BM=MN=NC,若AB

,求⊙O的半径。

【陈景润的故事】

陈景润不爱玩公园,不爱逛马路,就爱学习。学习起来,常常忘记了吃饭睡觉。

有一天,陈景润吃中饭的时候,摸摸脑袋,哎呀,头发太长了,应该快去理一理,要不,人家看见了,还当他是个姑娘呢。于是,他放下饭碗,就跑到理发店去了。

理发店里人很多,大家挨着次序理发。陈景润拿的牌子是三十八号的小牌子。他想:轮到我还早着哩。时间是多么宝贵啊,我可不能白白浪费掉。他赶忙走出理发店,找了个安静的地方坐下来,然后从口袋里掏出个小本子,背起外文生字来。他背了一会,忽然想起上午读外文的时候,有个地方没看懂。不懂的东西,一定要把它弄懂,这是陈景润的脾气。他看了看手表,才十二点半。他想:先到图书馆去查一查,再回来理发还来得及,站起来就走了。谁知道,他走了不多久,就轮到他理发了。理发员叔叔大声地叫:“三十八号!谁是三十八号?快来理发!”你想想,陈景润正在图书馆里看书,他能听见理发员叔叔喊三十八号吗?

过了好些时间,陈景润在图书馆里,把不懂的东西弄懂了,这才高高兴兴地往理发店走去。可是他路过外文阅览室,有各式各样的新书,可好看啦。又跑进去看起书来了,一直看到太阳下山了,他才想起理发的事儿来。他一摸口袋,那张三十八号的小牌子还好好地躺着哩。但是他来到理发店还有啥用呢,这个号码早已过时了。

教学处审核

部门主管审核

8

因篇幅问题不能全部显示,请点此查看更多更全内容