ºU!Uu>ÑåK•σ&Ä
2015c918F
1K•1ÏáÏÑå̇σ
UäkUþ—Ý$!-½5f:§¿…É/n©Ù!G!Cz!¼–OK•§¦1Ïu>XÚÑÑäkØëY5ÚØ(½5\"K•1ÏáÏÑåσÏ~Œ±8(•±eAa\"
1.11ìrÝ
/¥Â˿ش˜‡ðþ§´˜‡‘žmCzCþ§
^1Ï?1u>§ÙÑÑõÇ•‘X1ØÓrÝUC\"Xã1¤«§1ÏÑå‘X1ìrÝÅÄCz\"
1
1K•1ÏáÏÑå̇σ2
1.2Uía.
Éþ!º„!§ÝσK•§ØÓUía.1ÏÑÑ
•ؘ\"Xã2¤«§šUÚÒUž1ÏÑå²wØÓ\"šUžu>õLJpuÒUžu>õÇ\"
1.31Ï>³=†Ç
1Ï>³Ç•UK•1ÏXÚÑå\"Ø•Ä٦σ§>³
Çp§Ñåõ\"U>³1>=†Ç†>³(!(A5!á5Ÿ!óЧÝ!˜5âfË›úÚ‚¸Czk'\"
1.4Œí§Ý
1ÏÑÑØ=†1ìrÝ!1Ï>³=†Çk'§…„
2º„éºU|^ÇK•&Ä3
†Œí§Ýk'§ü ¡È1ÏÑÑõÇŒ±L«•µ
Ps=ηSI[1−0.005(t0+25)]
ª¥µη•1Ï=†Ç¶S•¡È¶I•1ìrݶt•Œí§Ý\"
dþªŒ±wѧŒí§ÝCz¬UC1ÏÑÑ5U\"§Ý,p§õǬk¤eü§¤±3ïáýÿ.ž§•A•ÄŒí§ÝK•\"
2º„éºU|^ÇK•&Ä
3ºåu>¥'uºU|^ÇïÄ¥k˜^-‡ÄnØ))[nاù´I‰Æ[CËA#[31927cÄky,<‚¡§•[4•nØ\"
2.1[nإb
•“Ó´n޶
•í63‡“Ó×Ñ¡þ´þ!¶•í6©ª÷X“Ó¶‚¶
•“Ó?3ü6+.¥§Xeãµ
6NëY5^‡µS1ν1=Sν=S2ν2
2º„éºU|^ÇK•&Ä4
2.2[4•í
3nØí¥b“Ó¤ÉÞ{åŒ±ÑØO§¿@•3“
Ó™=Äž§“ÓcØr´˜—\"
ν1µ“Óc•º„§ü •m/s¶ν2µ“Ó×ÐY„§ü •m/s¶νµ“Ó?º„§ü •m/s¶ρµ˜í—ݧü •kg/m3¶Sµ“Ó×L¡È§ü •m2¶K
1.žmtS6L“Ó˜íŸþ•µ
m=ρSνt
dÄþ½n•“Ӥɶ•í啵
F=
“ÓáÂõÇ•µ
P=Fν=ρSν2(ν1−ν2)
2.dÄU½n•mŸþºU•µ
E=
ü žmS6Lí6ÄU•µ
2mν1ρSν1tν213
==νSν1P=2t2t2
m(ν1−ν2)
=ρSν(ν1−ν2)t
1mν22
3.ü žmSí6ÄUUCþ•µ
22
1ρSνt(ν1−ν2)22
)=ρSν(ν1−ν2∆P=
2t2
d=í6B“Óž§“ÓáÂõÇ\"Ïdd∆P=Pµ
ρSν2(ν1−ν2)=
122
ρSν(ν1−ν2)2
2º„éºU|^ÇK•&Änµ
5
1
(ν1+ν2)2
=B“Óº„•“Óc•†•º„þŠ\"
ν=P=
122ρS(ν1+ν2)(ν1−ν2)4
Ïdµ
4.?ºUÇ•µ
η=
P1ν2ν2
(1−()2)(1+)=P2ν1ν1
ν2
ddŒ•§η•νng¼ê\"Matlab•ý-‚Xeµ1
2
=¤±§νν113ž§ηk•ŒŠ§=
ηmax=
16
=59.3%27
5.d±þ©Û•µ‡Y6u>ÅÑÑõÇ•µ
P=
13ηρSν12
Ïdºåu>ÅÑÑõdžºU|^Ç!˜í—Ý!“Ó×СÈÚ“Ócº„ng•¤'\"•JpÑÑõǧI‡·OŒ†“Ó¡È!O\\“Ócº„±9¦þ‘±ÑцÑ\\º„ƒ'313m\"