indiscretedynamicalsystems
OCostin
Piscataway,NJ08854-8019
RutgersUniversity
arXiv:math/0608308v1 [math.DS] 13 Aug 2006Piscataway,NJ08854-8019
Abstract
Auniqueanalyticcontinuationresultisprovedforsolutionsofarelativelygeneralclassofdifferenceequations,usingtechniquesofgeneralizedBorelsummability.
ThiscontinuationallowsforPainlev´epropertymethodstobeextendedtodifferenceequations.
ItisshownthatthePainlev´eproperty(PP)induces,underrelativelygeneralas-sumptions,adichotomywithinfirstorderdifferenceequations:allequationswithPPcanbesolvedinclosedform;onthecontrary,absenceofPPimplies,undersomefur-therassumptions,thatthelocalconservedquantitiesarestrictlylocalinthesensethattheydevelopsingularitybarriersontheboundaryofsomecompactset.
Thetechniqueproducesanalyticformulastodescribefractalsetsoriginatinginpolynomialiterations.
Contents
1Introductionandmainresults21.1Setting31.2Analyzability:transseriesandgeneralizedBorelsummability4
Transseriesfordifferenceequations5
1.3UniquenessofcontinuationfromNtoC5
1.4Continuationofsolutionsofdifferenceequationstothecomplexnplane51.5Continuabilityandsingularities51.6Integrability51.7Firstorderautonomousequations6
1.8Classificationofequationsoftype(1.11)withrespecttointegrability71.9Failureofintegrabilitytestandbarriersofsingularities71.10Example:thelogisticmap81.11Applicationtothestudyoffractalsets82Generalremarksonintegrability9
c199XJohnWiley&Sons,Inc.
CommunicationsonPureandAppliedMathematics,Vol.000,0001–0033(199X)
CCC0010–30/98/000001-33
2O.COSTINANDM.D.KRUSKAL
3Proofs
3.1ProofofTheorem1.1
Outline
3.2
3.33.4
3.53.6
121212121414
CompletionoftheproofofTheorem1.114Remarksonfirstorderequations15
Relationtopropertiesoftheconjugationmap16Conservedquantities17EndofproofofLemma1.4(a)17ProofofTheorem1.518
Notations18The“if”partofTheorem1.518The“onlyif”partofTheorem1.518ProofofTheorem1.819
Borelsummabilityofformalinvariantforlogisticmapwhena=120
ProofofTheorem3.1122
2427
2728293030
4Juliasetsforthemap(1.13)fora∈(0,1)5Behavioratthesingularitybarrier
Analyticity
EndoftheproofofTheorem1.10(iii)Appendix:Iterationsofrationalmaps
Furtherresultsusedintheproofs
6.1ProofofProposition1.7
1Introductionandmainresults
Solvabilityofdifferenceequationsaswellaschaoticbehaviorhavestim-ulatedextensiveresearch.FordifferentialequationsthePainlev´etest,whichconsistsincheckingwhetherallsolutionsofagivenequationarefreeofmovablenon-isolatedsingularitiesprovidesaconvenientandeffec-tivetoolindetectingintegrablecases(see§2).AdifficultyinapplyingPainlev´e’smethodstodifferenceequationsresidesinextendingthesolutions,whicharedefinedonadiscreteset,tothecomplexplaneoftheindependentvariableinanaturalandeffectivefashion,when,intheinterestingcases,thereisnoexplicitformulafor
INTEGRABILITYOFDIFFERENCEEQUATIONS3
them.Anumberofalternativeapproaches,butnogenuineanalogofthePainlev´etest,havebeenproposed,see[1][9][26][24](acomparativediscussionofthevariousapproachesispresentedin[1]).
Thepresentpaperproposesanaturalway,basedongeneralizedBorelsummabillity,toextendthesolutionsinthecomplexplane(Theorem1.1below),allowingforadefinitionofadiscretePainlev´etest.Subsequentanalysisshowsthatthetestissharpinaclassoffirstorderdifferenceequations:thosepassingthetestareexplicitlysolvable(Theorem1.5)whilepolynomialequationsfailingthetestexhibitchaoticbehaviorandtheirlocalconservedquantities(see§1.9)developbarriersofsingularitiesalongfractalsets(Theorem1.8).
Theapproachalsoallowsforadetailedstudyofanalyticpropertiesnearthesesingularitybarriersaswellasfindingrapidlyconvergentseriesrepresentingthecorrespondingfractalcurves(Theorem1.10).
1.1Setting
Weconsiderdifferencesystemsofequationswhichcanbebroughttotheform(1.1)
ˆI+1x(n+1)=Λ
4O.COSTINANDM.D.KRUSKAL
1.2Analyzability:transseriesandgeneralizedBorelsumma-bility
´TheseconceptswereintroducedbyEcalleinthefundamentalwork[14].
Analyzabilityofdifferenceequationswasshownin[7,14].Wegivebelowabriefdescriptionoftheconceptseffectivelyusedinthepresentpaperandreferto[10,7]forageneraltheory.Anexpressionoftheform(1.5)
˜(t):=x
˜k(t)Cke−k·µttk·ax
k∈Nm
˜k(t)areformalpowerseriesinpowersoft−1isanexponentialwherex
powerseries;itisatransseriesast→+∞ifℜ(µj)>0foralljwith1≤j≤m.SuchatransseriesisBorelsummableast→+∞ifthereexistconstantsA,ν>0andafamilyoffunctions
XkanalyticinasectorialneighborhoodSofR+,satisfying
(1.6)
p∈S,k∈Nm
sup
suchthatthefunctionsxkdefinedby(1.7)
xk(t)=
∞
|k|−ν|p|
Xk<∞Ae
0
e−tpXk(p)dp
˜ki.e.areasymptotictotheseriesx(1.8)
˜k(t)(t→+∞)xk(t)∼x
Itistheneasytocheckthatcondition(1.6)impliesthatthesum(1.9)
x(t)=
Cke−k·µttk·axk(t)
k∈Nn0
isconvergentinthehalfplaneH={t:ℜ(t)>t0},fort0largeenough.
˜inThefunctionxin(1.9)isbydefinitiontheBorelsumofthetransseriesx
(1.5).GeneralizedBorelsummabilityallowsforsingularitiesofXkofcer-˜is(generalized)BorelsummableintaintypesalongR+.Thetransseriesx
iϕ+−iϕ˜(·e)is(generalized)Borelsummable.(General-thedirectioneRifx
ized)Borelsummationisknowntobeanextendedisomorphismbetweentransseriesandtheirsums,see[14],[15],[10].
INTEGRABILITYOFDIFFERENCEEQUATIONS5
Transseriesfordifferenceequations
Braaksma[7]showedthattherecurrences(1.1)posessl-parametertransseries
˜k(n)areformalpowerse-solutionsoftheform(1.5)witht=nwherex
riesinpowersofn−1andl≤mischosensuchthat,afterreorderingtheindices,wehaveℜ(µj)>0for1≤j≤l.
Itisshownin[7]and[19]thatthesetransseriesaregeneralizedBorelsummableinanydirectionandBorelsummableinallexceptmofthemandthat(1.10)
x(n)=
k∈Nl
Cke−k·µnnk·axk(n)
isasolutionof(1.1),ifn>y0,t0largeenough.
1.3UniquenessofcontinuationfromNtoC
Thevaluesofxontheintegersuniquelydeterminex.
Theorem1.1Intheassumptionsin§1.1and1.2,definethecontinua-tionofxk(n)inthehalfplane{t:ℜ(t)>t0}byx(t),cf.(1.6)–(1.9).Thefollowinguniquenesspropertyholds.Ifintheassumptions(1.6)–(1.9)wehavex(n)=0forallexceptpossiblyfinitelymanyn∈N,thenx(t)=0forallt∈C,ℜ(t)>t0.Theproofisgivenin§3.1.
1.4Continuationofsolutionsofdifferenceequationstothe
complexnplane
Therepresentation(1.10)andTheorem1.1makethefollowingdefinitionnatural.
1.5Continuabilityandsingularities
ThefunctionxisanalyticinHandhas,ingeneral,nontrivialsingularitiesinC\\H.Theresultsin[12],extendedtodifferenceequationsin[7,8,19],giveconstructivemethodstodeterminethosesingularitiesthatariseneartheboundaryofH;theseform,generically,nearlyperiodicarrays.
1.6Integrability
Inparticular,Painlev´e’stestofintegrability(absenceofmovablenon-isolatedsingularites)extendsthentodifferenceequations.
6O.COSTINANDM.D.KRUSKAL
Asinthecaseofdifferentialequations,fixedsingularitiesaresingularpointswhoselocationisthesameforallsolutions;theydefineacommonRiemannsurface.Othersingularities(i.e.,whoselocationdependsoninitialdata)arecalledmovable.
Definition1.2WesaythatadifferenceequationhasthePainlev´eprop-ertyifitssolutionsareanalyzableandtheiranalyticcontinuationsonaRiemannsurfacecommontoallsolutions,haveonlyisolatedsingularities.Note.Wefollowtheusualconventionthatanisolatedsingularpointofananalyticfunctionfisapointz0suchthatfisanalyticinsomediskcenteredatz0exceptperhapsatz0itself.Branchpointsarethusnotiso-latedsingularitiesandneitheraresingularitybarriers;itisworthnoting,however,thatfordifferentialequationsthereexistequationssometimesconsideredintegrable(theChazyequation,athirdordernonlinearoneisthesimplestknownexample)whosesolutionsexhibitsingularitybarriers.
1.7Firstorderautonomousequations
Theseareequationsofthetype(1.11)
xn+1=G(xn):=axn+F(xn)
SomeanalyticityassumptionsonFarerequiredforourmethodtoapply.Wedefineaclassofsinglevaluedfunctionsclosedunderallalgebraicoperationsandcomposition(thelatterisneededsincexnwrittenintermsofx0involvesrepeatedcomposition).
WeneedtoallowforsingularbehaviorinF,andmeromorphicfunc-tionsareobviouslynotclosedundercomposition.Thefollowingdefinitionformalizesanextensionofmeromorphicfunctions,oftenusedinformallyinthetheoryofintegrability.
Definition1.3Wedefinethe”mostlyanalyticfunctions”tobetheclassMoffunctionsanalyticinthecomplementofaclosedcountableset(whichmaydependonthefunction).
Lemma1.4(a)TheclassMisclosedunderaddition,multiplicationandmultiplicationbyscalars,andalsounderdivisionandcompositionbetween(nonconstant)functions.Itincludesmeromorphicfunctions.
(b)IfG∈Misnotaconstant,thentheequationG(x)=yhassolutionsforalllargeenoughy.
INTEGRABILITYOFDIFFERENCEEQUATIONS7
(c).TheclassM0ofG∈M,withGanalyticatzero,G(0)=0and0<|G′(0)|<1isclosedundercomposition.Inparticular,G◦m∈Mform≥1.Proof.Allpropertiesin(a)areobviousexceptforclosureundercomposi-tionanddivision,provedin§3.3;(b)followsfromtheproofofLemma6.9.(c)iseasilyshownusing(a).
1.8Classificationofequationsoftype(1.11)withrespect
tointegrability
Theorem1.5AssumeG∈Mhasastablefixedpoint(sayatzero)whereitisanalytic.Thenthedifferenceequation(1.11)hasthePainlev´epropertyiffforsomea,b∈Cwith|a|<1,(1.12)
G(z)=
az
8O.COSTINANDM.D.KRUSKAL
arenotsolvableintermsoffunctionsextendibletothecomplexplane,oronRiemannsurfaces.Theconservedquantitieswilltypicallydevelopsingularitybarriers.
Weuse,intheformulationofthefollowingtheorem,anumberofstandardnotionsandresultsrelevanttoiterationsofrationalmaps;thesearebrieflyreviewedintheAppendix,§6.
Theorem1.8AssumeGisanonlinearpolynomialwithanattractingfixedpointattheorigin.DenotebyKpthemaximalconnectedcomponentoftheoriginintheFatousetofG.(ItfollowsthatKpisanopen,bounded,andsimplyconnectedset).
ThenthedomainofanalyticityofQ(see(3.26))isKp,and∂KpisasingularitybarrierofQ.Thistheoremisprovedin§3.5.
1.10Example:thelogisticmap
Thediscretelogisticmapisdefinedby(1.13)
xn+1=axn(1−xn)
Thefollowingresultwasprovedbytheauthorsin[11].
Proposition1.9Therecurrence(1.13)hasthePainlev´epropertyinDefinition1.2iffa∈{−2,0,2,4}(inwhichcasesitisexplicitlysolvable).Ifa∈/{−2,0,2,4}thentheconservedquantityhasbarriersofsingulari-ties.
1.11Applicationtothestudyoffractalsets
ThetechniquesalsoprovidedetailedinformationontheJuliasetsofit-erationsoftheinterval.
Theorem1.10Considertheequation(1.13)fora∈(0,1/2).
(i)ThereisananalyticfunctionG,satisfyingthefunctionalrelation(1.14)
G(z)2=aG(z2)(1+G(z))
whichisaconformalmapoftheopenunitdiskS1onto{x−1:x∈ext(J)}whereJistheJuliasetof(1.13).
(ii)GisLipschitzcontinuousofexponentlog2(2−a)in
INTEGRABILITYOFDIFFERENCEEQUATIONS9
(iii)∂S1isabarrierofsingularitiesofG.Near1∈∂S1wehave(1.15)where
G(z)=ΦτΨ(lnτ)
τ=τ(z)=ln(z−1)log2(2−a)
a
Φisanalyticatzero,Φ(0)=
1−a
+
Cl;k,mt2πillog2(2−a)/ln2+klog2(2−a)+m
l∈Zk,m∈N
wheretheseriesconverges(rapidly)iftand|argt|aresmall.Thistheoremisprovedin§4.
Note1.11TheproofofProposition5.1showsthattheLipschitzexpo-nentisoptimal.Thetheoremisvalidforanya<1,andtheproofissimilar.
Note1.12ItfollowsfromTheorem1.10(iii)and(1.14)thateverybi-naryrationalisacuspofJofangleπlog2(2−a),seealsoFig.1.
2Generalremarksonintegrability
Thisproblemhasalonghistory,andthetaskoffindingofdifferentialequationssolvableintermsofknownfunctionswasaddressedasearlyastheworksofLeibniz,Riccati,Bernoulli,Euler,Laplace,andLagrange.“Inthe18thcentury,Eulerwasdefiningafunctionasarisingfromtheapplicationoffinitelyorinfinitelymanyalgebraicoperations(addition,multiplication,raisingtointegerorfractionalpowers,positiveornega-tive)oranalyticoperations(differentiation,integration),inoneormorevariables”[6].Itwaslaterfoundthatsomelinearequationshavesolutionswhich,althoughnotexplicitbythisstandard,have“good”globalprop-ertiesandcanbethoughtofasdefiningnewfunctions.Toaddressthequestionwhethernonlinearequationscandefinenewfunctions,FuchshadtheideathatacrucialfeaturenowknownasthePainlev´eproperty(PP)istheabsenceofmovable(meaningtheirpositionissolution-dependent,
10O.COSTINANDM.D.KRUSKAL
3
3/2
1.0
1.0 0
0.30.40.50.60.7Figure1.1.(a)JuliasetforG=
2,
1
c=.0793243476(theplotrelieson(5.8),N=300).
INTEGRABILITYOFDIFFERENCEEQUATIONS11
cf.§1.6)essentialsingularities,primarilybranch-points,see[17].Firstor-derequationswereclassifiedwithrespecttothePPbyFuchs,BriotandBouquet,andPainlev´eby1888,anditwasconcludedthattheygiverisetononewfunctions.Painlev´etookthisanalysistosecondorder,lookingforallequationsoftheformu′′=F(u′,u,z),withFrationalinu′,alge-braicinu,andanalyticinz,havingthePP[29,30].Hisanalysis,revisedandcompletedbyGambierandFuchs,foundsomefiftytypeswiththispropertyandsucceededtosolveallbutsixofthemintermsofpreviouslyknownfunctions.TheremainingsixtypesarenowknownasthePainlev´eequations,andtheirsolutions,calledthePainlev´etranscendents,playafundamentalroleinmanyareasofpureandappliedmathematics.Begin-ninginthe1980’s,almostacenturyaftertheirdiscovery,theseproblemsweresolved,usingtheirstrikingrelationtolinearproblems1,byvariousmethodsincludingthepowerfultechniquesofisomonodromicdeformationandreductiontoRiemann-Hilbertproblems[13],[16],[25].
SophieKovalevskayasearchedforcasesofthespinningtophavingthePP.Shefoundapreviouslyunknownintegrablecaseandsolveditintermsofhyperellipticfunctions.Herwork[20],[21]wassooutstandingthatnotonlydidshereceivethe1886BordinPrizeoftheParisAcademyofSciences,buttheassociatedfinancialawardwasalmostdoubled.ThemethodpioneeredbyKovalevskayatoidentifyintegrableequa-tionsusingthePainlev´epropertyisnowknownasthePainlev´etest.PartofthepowerofthePainlev´eteststemsfromtheremarkablephenomenonthatequationspassingitcangenerallybesolvedbysomemethod.Thisphenomenonisnotcompletelyunderstood.Atanintuitivelevel,however,ifforexampleallsolutionsofanequationaremeromorphic,thenbysolv-ingtheequation“backwards,”thesesolutionsandtheirderivativescanbewrittenintermsoftheinitialconditions.Thisgivesrisetosufficientlymanyintegralsofmotionwithgoodregularitypropertiesgloballyinthecomplexplane.
ThePainlev´etesthassomedrawbacks,notablylackofinvarianceun-dertransformations.Toovercomethem,[22]introducedthepoly-Painlev´etest.
12O.COSTINANDM.D.KRUSKAL
3Proofs
3.1ProofofTheorem1.1
Outline
Theideaoftheproofistousetheconvergenceof(1.9)anditsasymptoticpropertiestoshowthatalltermsxkvanish.
Westartwithsomepreparatoryresults.
Remark3.1IfxkhaveXk=≡0thenalsoXk≡0(seeLemma[5],for∞j=largeLj(1.7))soforsmallpwe
kcjpwithcLzintherightk=half0forplanesomewehaveLk≥0.ByWatson’s
(3.1)
xk∼
∞cjj!
j=Lk
INTEGRABILITYOFDIFFERENCEEQUATIONS13
Letalso(3.4)
rj=maxℜ(a·k)
k∈Tj
Notealsothatforsomeα>0wehave(3.5)
rj≤αMj
∞
ApplyingRemark3.2againweseethat(3.6)
Tj=S
j=0
Lemma3.4Wehave(see(1.9)),(3.7)
x(z)=
k∈T0
Cke−k·µzzk·axk(z)+O(e−M1zzr1)
(z→+∞)
Proof:Wewrite(3.8)
x(z)=
k∈T0
Ce
k−k·µzk·a
zxk(z)+
k∈S\\T0
Cke−k·µzzk·axk(z)
Thesecondseriesisuniformlyandabsolutelyconvergentforlargeenough
z∈R+sinceitisboundedbythesub-sumofa(derivativeof)amulti-geometricseries(3.9)
k∈S\\T0
|AkCkzk·a|e−k·ℜ(µ)z
Since(3.9)isabsolutelyconvergentitcanbethusbeconvergentlyrear-rangedas(3.10)
∞
e
−Mjz
j=1k∈Tj
|ACz
kkk·a
|=
j=1
∞
e−MjzzrjDj(z)
(seeagainDefinition3.3andRemark3.2).ItiseasytoseethatDj(z)are
nonincreasinginz∈R+andforlargeenoughz>0allproductszrje−Mjzaredecreasing(cf.also(3.5)).Thereforetheconvergentseries(3.11)
∞
e−(Mj−M1)zzrj−r1Dj(z)
j=1
isdecreasinginz>0andso
∞
e−MjzzrjDj(z)≤Const.e−M1zzr1
j=1
14O.COSTINANDM.D.KRUSKAL
Note.AsimilarstrategycouldbealsobeusedtoshowtheclassicalWeierstrasspreparationtheorem.
Assumefirst,togetacontradiction,thatwehavex0soforsmallpwehaveXk=∞j=mjwithcm≡0andsoX0≡0
0cjp0=0.Then,since
x(n)=x0(n)+O(e−M1nnr1)
andbyRemark3.1(3.12)
−m0−1nlim→∞
nx0=(m0+1)!cm0=0
whichcontradictsx(n)=0forn∈N.
Letnow(3.13)R0=max{ℜ(k·a−Lk−1):k∈T0}
and(3.14)
T0′
={k∈T0:ℜ(k·a−Lk−1)=R0}
Lemma3.5Wehave
(3.15)x(z)=
CkcLzk·a−Lk−1e−k·µz+ozR0e−M0z
kLk!for(z→+∞)
k∈T0
′Proof:ThisisanimmediateconsequenceofRemark3.1,Lemma3.4,and(3.13)and(3.14).
INTEGRABILITYOFDIFFERENCEEQUATIONS15
Lemma3.6Letdk∈C.Then
′k∈T0
dkn
k·a−Mk−k·µn
e=on
R0−K1n
e
(asn→∞,n∈N)
iffalldkarezero.
′),nlargeenoughandnotethatProof:Wenowtaken0=card(T0
(n+j)b=nb(1+o(n−1))ifj≤n0.ThenasimpleestimateshowsthattoprovetheLemmaitsufficestoshowthatthefollowingequationcannotholdforall0≤l≤n0−1
(3.16)where(3.17)
′k∈T0
dke−(n+l)k·µ=ql
ql=o(e−nM0)(asn→∞,n∈N)
Ifn0=1thisisimmediate.Otherwise,wemaythinkof(3.16)for0≤l≤
′.Thedeterminant∆n0−1asasystemofequationsforthedkwithk∈T0
ofthesystemisanumberofabsolutevaluee−nlM0timestheVandermonde
′.Inparticular,forsomeC>0determinantofthequantities{e−k·µ}k∈T0
independentofnwehavethate−nlM0|∆|isindependentofn,(3.18)
−nlM0−(k1−k2)·µe|∆|=C(e−1)k1=k2∈T′
0
andnonzeroby(1.4).Similarly,theminor∆kofanydkisboundedby
Dke−n(l−1)M0withDkindependentofn.Wegetdk=o(1)forlargen
′,andsod=0.forallk∈T0k
16O.COSTINANDM.D.KRUSKAL
Assumefornowthatin(1.11)G∈Misanalyticatzero,F(0)=F′(0)=0and0<|a|<1.Aswementioned,thereisaone-parameterfamilyofsolutionspresentedassimpletransseriesoftheform(3.19)
xn=xn(C)=
∞
enklnaCkDk
k=1
withDkindependentofC,whichconvergeforlargen.Bydefinitiontheir
continuationtocomplexnis(3.20)
x(z)=x(z;C)=
∞
ezklnaCkDk,
k=1
whichisanalyticforlargeenoughz.TotestforthePainlev´eproperty,we
proceedtofindthepropertiesofx(z)forthosevaluesofzwhere(3.20)isnolongerconvergent,andthenfindthesingularpointsofx(z).
Note.Ingeneral,although(3.20)representsacontinuousone-parameterfamilyofsolutions,theremaybemoresolutions.Wealsoexaminethisissue.
Relationtopropertiesoftheconjugationmap
Wecanalternatively,anditturnsoutequivalently,defineacontinuationasfollows.BythePoincar´etheorem[2]p.99thereexistsauniquemapϕwiththeproperties(3.21)andsuchthat(3.22)
ϕ(az)=G(ϕ(z))=aϕ(z)+F(ϕ(z))ϕ(0)=0,ϕ′(0)=1andϕanalyticat0
Themapϕisaconjugationmapbetween(1.11)anditslinearization(3.23)
since,inviewof(3.22),(3.24)
xn=ϕ(Can)Xn+1=aXn
forgivenCandnlargeenough,xnisasolutionoftherecurrence(1.11).WeobtainacontinuationofxfromNtoCthrough(3.25)
x(z)=ϕ(Caz)
INTEGRABILITYOFDIFFERENCEEQUATIONS17
Lemma3.8(i)Forequationsoftype(1.11),thecontinuations(3.20)and(3.25)agree.
(ii)x(z;C)definedby(3.20)hasonlyisolatedmovablesingularitiesiffϕhasonlyisolatedsingularitiesinC.
Proof:Indeed,ϕisanalyticattheorigin,andapowerseriesex-pansionforlargenofϕ(Can)leadstoasolutionoftheform(3.19),whichobviouslysolves(1.11).Ifn0islargeenough,itisclearthat(3.19)canbeinvertedforCintermsofxn0andwecanalsofindC′sothatxn0=ϕ(C′an0).Ontheotherhandxn0uniquelydeterminesallxnwithn>n0.Forequationsoftype(1.11),writingx(z)=ϕ(Caz)isthustantamounttomakingthesubstitutionn=zin(3.19).Notethat,azisentireandϕisanalyticatzero,andthepresenceofasingularityofϕwhichisnotisolatedisequivalenttothepresenceofasimilarbutmovablesingularityofx(z)=ϕ(Caz)sinceitspositiondependsonC.
18O.COSTINANDM.D.KRUSKAL
isaleastk=k(x)suchthatG(k)
2(x)=0andthenG2hasmultiplicity
exactlykinasmalldiskDxaroundx.ThenG−1
Sinceforeveryxthereisanopen2(E˜1)∩Dxiscountable.
∩DxiscountableitfollowsthatE˜setDxsuchthatE
,thusE,isalsocountable.Inthesameway,foranya∈/wehavethatG−definedi1
Ei
(a)iscountable.Fordivision,notethat1/GisdefinedwhereverGisandnonzero.SinceGisnotaconstantthesameargumentasaboveshowsthatG−1(0)iscountable.
The“if”partofTheorem1.5
Inthisdirectiontheproofistrivial.Indeed,ifGislinearfractional,thenthegeneralnonidenticallyzerosolutionoftheequation(1.11)canbeobtainedbysubstitutingx=1/yin(1.11)whichthenbecomeslinear.Weget
xn=
Ca−n+
b
INTEGRABILITYOFDIFFERENCEEQUATIONS19
Lemma3.10Iffhasonlyisolatedsingularitiesandfisnotlinear-fractionalthenforanylargeenoughw,theequationf(z)=whasatleasttwodistinctroots.
Proof:Iffisrational,thenthepropertyisimmediate.Thenas-sumethatthatfisnotrational,thusfhasatleastoneessentialsin-gularity,possiblyatinfinity[18].IffhasanessentialsingularityinC,thenitisisolatedbyhypothesisandthenthepropertyfollowsfromThe-orem6.7.ThenassumethatfhasnoessentialsingularityinC,thusinfinityistheonlyessentialsingularityoff.IfitisisolatedthenTheo-rem6.7appliesagain.Otherwisefhasinfinitelymanypolesaccumulatingatinfinity.Sincefmapsaneighborhoodofeverypoleintoafullneigh-borhoodofinfinity,anysufficientlylargevalueoffhasmultiplicitylargerthanone.
20O.COSTINANDM.D.KRUSKAL
thereisafinitesubcovering
NC⊂OC=
Dǫ(zi)(zi)
i=1
withzi∈C.LetMbethelargestofthem(zi),i=1,...,N.Then,by
construction,(3.28)
G[M](OC)∈Dǫ
Weseefrom(3.27)thataQ(z)=Q(G(z))=a−1Q(G(G(z)))andingeneral,forn∈N,(3.29)
Q(z)=a−nQ(G[n](z))
WedefineQ(z)inOCbyQ(z)=a−MQ(G[M](z)).By(3.28),andbecause(3.29)holdsinDǫ,thisunambiguouslydefinesananalyticcontinuationofQfromDǫtoDǫ∪zeroOC.SinceKpisopenandsimplyconnectedandsinceQisanalyticnearandcanbecontinuedanalyticallyalonganyarcinKp,standardcomplexanalyticresultsshowthatQis(singlevaluedand)analyticinKp.
Forthelastpart,notethattheboundaryofKpliesintheJuliasetJ,whichistheclosureofrepellingperiodicpoints(seeAppendix,Lemma6.3).Assumethatx0isarepellingperiodicpointofGofperiodn,andthatx0isapointofanalyticityofQ.Relation(3.29)impliesthatQ(x0)=0andthatQ′(x0)=a−n(G[n])′(x0)Q′(x0)butsince|a|<1and|(G[n])′(x0)|>1thisimpliesQ′(xm)0)=0.Inductively,inthesamewayweseethatQ((x0)=0forallm,whichundertheassumptionofanalyticityentailsQ≡0whichcontradicts(3.21).
INTEGRABILITYOFDIFFERENCEEQUATIONS21
straightforwardly,andBorelsummabilitymakesitpossibletoanalyzethepropertiesofthisequationrigorously.AformalanalysisofthePainlev´epropertyisrelativelystraightforwardusingmethodssimilartothosein[12].Weconcentratehereonpropertiesoftheconservedquantities.Therecurrencean+1=an(1+an)−1isexactlysolvableanddiffersfromthelogisticmapbyO(a3n)forsmallan.Theexact
−1solutionisn−an=Const,whichsuggestslookinginthelogisticmap
caseforaconstantoftheiterationintheformofanexpansionstarting
1withC=n−a−n.Thisyields(3.31)
C(n;v)∼n−v−1−lnv−
1
3v2−
13
240
v4+···
whichisindeedaformalinvariant,buttheassociatedseriesisfactorially
divergentaswillappearclearshortly.NeverthelesswecanshowthattheexpansionisBorelsummabletoanactualconservedquantityinasectorialneighborhoodofv=0.
Theorem3.11ThereisaconservedquantityCdefinedneartheorigininC\\R−,oftheform
C(n;v)=n−v−1−ln(v)−R(v)
whereR(v)hasaBorelsummableseriesattheorigininanydirectionintheopenrighthalfplane.R(v)hasasingularitybarriertouchingtheori-gintangentiallyalongR−.ThissingularitybarrierisexactlytheboundaryoftheLeaudomainof(3.30).Welet(3.32)
C(n;v):=n−v−1−lnv−R(v)
andimposetheconditionthatCisconstantalongtrajectories.Thisyields(3.33)
R(v)=R(v−v2)+
v
x
+ln
x
22O.COSTINANDM.D.KRUSKAL
whichbyformalexpansioninpowersofx−1becomes∞h(k)(x)
x
(3.36)
h(x−1)=
k=0
x
+ln
p
+
k∞(−p)k
=1
INTEGRABILITYOFDIFFERENCEEQUATIONS23
andF∗kistheconvolutionofFwithitselfktimes.Werewrite(3.38)intheform(3.39)
H=
1−e−p−p
(ep−1)k=1
∞(−p)k
2
+ǫ,
π
k!
=
∞(−1)kp2k
f∗1
∗k
=
k=1
∞(−p)k
(k−1)!k!(k−1)!
0
ds
1
f(p(1−t))tk−1dt
k=1
ItisimmediatethatifpisinacompactsetKandfisanalyticinK
thenthesumin(3.41)isuniformlyconvergentinKandanalyticinp.FurthermorethesumisO(p3)forsmallpsincef∈A.Nowweseethat(3.42)
∞k2k
−ν|p|(−1)pe
k=1
k!(k−1)!
≤fν
k=1
∞
1
0
|p|2k
−ν|p|(1−t)k−1−ν|p|tef(p(1−t))tedt
∞
k!(k−1)!
0
tk−1e−ν|p|tdte|p|/ν
=fν
k=1
∞|p|k
ν
24andthus(3.43)
O.COSTINANDM.D.KRUSKAL
A≤Constν−1
forsufficientlylargeν,wherewetookintoaccounttheexponentialde-creaseof(ep−1)−1forlargepinN.ThustheequationhasauniquefixedpointH∈A.InparticulartheLaplacetransformh(x)=LH=∞−xp
H(p)dpiswelldefinedandanalyticinthehalf-planeℜ(x)>ν.0e
Itisnowimmediatetocheckthath(x)satisfiestheequation(3.36).
4Juliasetsforthemap(1.13)fora∈(0,1)
Itisconvenienttoanalyzethesuperattractingfixedpointatinfinity;thesubstitutionx=1/ytransforms(1.13)into(4.1)
yn+1=−
2yn
a(G(z)+1)
;
G(0)=0,G′(0)=a
Lemma4.1([11])ThereexistsauniqueanalyticfunctionGintheneigh-borhoodoftheoriginsatisfying(4.2).ThisGhasonlyisolatedsingular-itiesinCifandonlyifa∈{−2,2,4}.Inthelattercase,(1.13)canbe
solvedexplicitly.
Ifa∈{−2,2,4}thentheunitdiskisabarrierofsingularitiesofG.Lemma4.2GisanalyticintheopenunitdiskS1andLipschitzcontin-uousin
2
INTEGRABILITYOFDIFFERENCEEQUATIONS25
(withthechoiceofbranchconsistentwithG(0)=0,G′(0)=a).Ifr<1
1
then(4.3)providesanalyticcontinuationinadiskofradiusr
2)areTheassumptionG(z0)=−4a−1thusimpliesthatthevaluesG(z0
inR−anddecreaseinn,againimpossibleGisanalyticat0andG(0)=0.WenowshowGisboundedinS1.Indeed,by(4.3)wehave
−∞,−4a
−1
a(x+1)
iswelldefinedandincreasingontheinterval
n
.
(4.4)
|G(z)|≤U(|G(z2)|)
a
1−a
ontheotherhand,acalculationshowsthat(4.5)
U(s)≤
SinceG(0)=0andGisanalyticinS1,(4.4)and(4.5)implythat
a
(4.6)sup|G(z)|≤
z∈S1
26
O.COSTINANDM.D.KRUSKAL
Proposition4.6Fora∈
0,1
2n
,2
−
1
n
2
+
4
+
mG(z)(2+G(z))
sothat
|G′(z)|≤|G′(z2
)|(1−maxa)|y|≤a
2a(1+y)2
2−a
|G′(z2)|
ifa≤1/2fromwhichProposition4.6followsimmediately.
INTEGRABILITYOFDIFFERENCEEQUATIONS27
5Behavioratthesingularitybarrier
Proposition5.1Thereisδ>0,arealanalyticfunctionΨ,periodicofperiodln2andananalyticfunctionΦ,Φ′(0)=1suchthatfor|arg(1−z)|<δ(1.15)holds.
Proof:Letω=2π/ln2,β=log2(2−a).Withz0∈(0,1)and1/2n
zn=z0,thesequenceGn=G(zn)isincreasingandboundedbyL,see(4.3).Itfollowsimmediatelyfrom(4.3)and(4.4)that(5.1)
L−Gn:=δn↓0asn→∞(L:=
a(2−a)
a
+C2,C2=1−a
(5.2)δn+1=
1
1−C1δn+1
δn
Eqs.(5.1)and(5.2)implythatforanyǫ>0wehave(5.3)Let(5.4)
cf.(5.1).Now
(C1−C2)δn+1θn−θn+1
−1=e
δn=o(2−a−ǫ)−n
asn→∞
δn=lnβ(1/zn)eθn=2−nβlnβ(1/z0)eθn
28O.COSTINANDM.D.KRUSKAL
amountstoashiftinn).Ifǫ1issmallenough,thenitiseasytocheckthatequation(5.2)isacontractivemappingintheintheballofradiuscSǫ1={ζ:|ζ≤ǫ1}inBanachspacel∞,α(N)ofvectorsv(n;ζ)analyticinζ=z0−z1withrespecttothenorm
v=
n≥1;|ζ|≤ǫ1
sup
|v(n,ζ)α−n|
√
andlocalanalyticityinaneighborhoodoftheinterval[z0,
EndoftheproofofTheorem1.10(iii)
Weusetheinformationobtainedin§5.Leteθn=(1+wn)eΘ;givenδ>0wechoosen0largeenoughandǫ2sothat|wn(z0)|<δif|z−z0|<ǫ2andn≥n0.Welet,h=e2Θ,εn=2nβ,s=lnβ(1/z0),c=C1−C2,C=c−C2andobtain(5.7)wn=
Ce2Θsεn
24Θ−w2Θ2Θ1−2εnse2Θ+2ε2n+1C2se(1−εnC2se)nse
Asin§5,acontractivemappingargumentshowsthatw=(wn,wn+1,...)
isanalyticinse2Θ,ifsissmallenough.Theconclusionnowfollowsfromthedefinition
2G(z0
−n0
)=L+sδn0
and(5.4),(5.5),§5andthesubstitutione2Θ(·)=Ψ(ln(ln(·)).Formula(1.17)followsimmediatelyfrom(1.15).
τN+1
τN+1−τN
−
gN
INTEGRABILITYOFDIFFERENCEEQUATIONS29
Appendix:Iterationsofrationalmaps
Weintroduceanumberofdefinitionsandresultsforiterationsofrationalmaps,whicharetreatedinmuchmoredetailandgeneralityin[32]and[4].WeshallillustratethemainconceptsonthesimplecaseG=ax(1−x).InFigure1,theinterior(inthecomplexplane)ofthefractalcurvesisasetinvariantunderGandwiththefurtherpropertythatstartingwithz0insidethem-thiterateofGatz0,G◦m(z0),convergestozeroasm→∞.ThesearestablefixeddomainsofG.
ConsiderthepolynomialmapG.AFatoudomainofGisastablefixeddomainVofGcharacterizedbythepropertythatG◦nconvergesinthechordalmetricontheRiemannsphereC∞toafixedpointofG,locallyuniformlyinV.
Definition6.1([4],p.50)LetGbeanon-constantrationalfunction.TheFatousetofGisthemaximalopensubsetofC∞onwhich{G◦n}isequicontinuousandtheJuliasetofGisitscomplementinC∞.AFatoudomainisaLeaudomain(oraparabolicbasin)ifx0∈∂Vandthemultiplierofx0(thederivativeatx0)isλ=12.InFigure1thishappensfora=1.
TheJuliasetcanbecharacterizedbythefollowingproperty.Lemma6.2([4],p.148)LetGbearationalmapofdegreed,(cf.Defi-nition6.4)whered≥2.ThenJisthederivedset3oftheperiodicpointsofG.
Undertheassumptionsabove,wehave
Lemma6.3([4],p.148)JistheclosureoftherepellingpointsofG.Definition6.4([4],p.30.)IfR=P/QwherePandQarepolynomi-als,thenthedegreeoftherationalfunctionRismax{deg(P),deg(Q)}.Definition6.5([4])IfRisarationalfunctionandR◦m=R◦R◦···◦Rntimes,thenaperiodicpointofperiodnofRisapointzsuchthatR◦mz=zandR◦mz=zifm 30O.COSTINANDM.D.KRUSKAL Lemma6.6([3],[4])LetRbearationalfunctionofdegreed≥2,andsupposethatRhasnoperiodicpointsofperiodn.Then(d,n)isoneofthepairs (2,2),(2,3),(3,2),(4,2) (moreover,eachsuchpairdoesarisefromsomeRinthisway).Furtherresultsusedintheproofs Theorem6.7(BigtheoremofPicard,localformulation[31],[18])Iffhasanisolatedsingularityatapointz0andifthereexistssomeneighborhoodofz0wherefomitstwovalues,thenz0isaremovablesingularityorapoleoff. Theorem6.8(Picard-Borel,[28])Ifϕisanynonconstantfunctionmero-morphicinC,thenϕavoidsatmosttwovalues(infinityincluded).Allweneedinthepresentpaperisthatatmosttwofinitevaluesareex-cluded.ThisisimmediatelyreducedtothemorefamiliarPicardtheorembynotingthatifλisanexcludedvalueoffthen1/(f−λ)isentire. 6.1ProofofProposition1.7 ByTheorem1.5,(1.11)doesnothavethePainlev´epropertyatsomestablefixedpointiffGisnotlinear-fractional,inwhichcase(1.11)failstohavethePainlev´epropertyatanyotherstablefixedpoint.Moregenerally,Proposition1.7followsfromthefollowingresult. Lemma6.9IfG◦misoftheform(1.12)thenGisoftheform(1.12).Proof:Since(1.12)isonetoone,theconclusionfollowsfromtheremarkthatifGisnotlinear-fractional,thenG(z)hasmultiplicitygreaterthanoneforallsufficientlylargez(andthenthesameholdsforG◦m(z)).Indeed,assumethatGisnotlinear-fractional.IfGisrational,thentheconclusionisobvious.IfthesetofsingularitiesofGisfinite,thentheyareallisolatedandatleastoneisanessentialsingularity(otherwiseGisrational[18])andTheorem6.7applies. Sowemayassumethesetofsingularitiesisinfinite.Sincebyassump-tionthissetisclosedandcountable,itcontainsinfinitelymanyisolatedpoints.(Indeed,asetwhichisclosedanddenseinitself,i.e.aperfectset,iseitheremptyorelseuncountable.)ThenifGhasanisolatedessential INTEGRABILITYOFDIFFERENCEEQUATIONS31 singularity,Theorem6.7applies,andifnotthenthereareinfinitelymanypolesofG.InthelattersituationanysufficientlylargevalueofGhasmultiplicitylargerthanonesinceGmapsaneighborhoodofeverypoleintoafullneighborhoodofinfinity. Acknowledgment.TheauthorsareverygratefultoRDCostinformanyusefuldiscussionsandcomments.Theauthorswouldalsoliketo 32O.COSTINANDM.D.KRUSKAL thankRConte,FFauvet,NJoshiandDSauzinforinterestingdiscus-sions. Bibliography [1]MJAblowitz,RHalburd,andBHerbstOntheextensionofthePainlev´eproperty todifferenceequationsNonlinearity13pp.8–905(2000).[2]DVAnosovandVIArnoldeds.DynamicalSystemsISpringer-Verlag(1988).[3]INBakerFixpointsofpolynomialsandrationalfunctionsJ.LondonMath.Soc. 39pp.615–622(19).[4]AFBeardonIterationofRationalFunctionsSpringerVerlag,NewYork(1991).[5]CMBenderandSAOrszagAdvancedmathematicalmethodsforscientistsand engineersI;Asymptoticmethodsandperturbationtheory,McGrawHill(1978)andSpringer(1999).[6]EBorelLe¸conssurlesfonctionsmonog`enes,Gauthier-Villars,Paris(1917).[7]BLJBraaksmaTransseriesforaclassofnonlineardifferenceequationsJ.Differ. EquationsAppl.7,no.5,717–750(2001).[8]B.L.J.Braaksma,RKuik(submitted). [9]RConteandMMusetteRulesofdiscretizationforPainlev´eequationsTheory ofNonlinearSpecialFunctions(Montreal13–17May1996)ed.LVinetandPWinternitz(Berlin:Springer).[10]OCostinOnBorelsummationandStokesphenomenaforrankonenonlinear systemsofODE’sDukeMath.J.Vol.93,No.2pp.2–344(1998).[11]O.CostinandM.KruskalMovablesingularitiesofsolutionsofdifferenceequations inrelationtosolvability,andstudyofasuperstablefixedpointTheoreticalandMathematicalPhysics,133(2):14531460(2002).[12]OCostinandRDCostinOntheformationofsingularitiesofsolutionsofnon-lineardifferentialsystemsinantistokesdirectionsToappearinInventionesMath-ematicae.[13]PADeiftandXZhouAsteepestdescentmethodforoscillatoryRiemann-Hilbert problems.AsymptoticsfortheMKdVequationAnn.ofMath.(2)137no2pp.295–368(1993).[14]JEcalleLesfonctionsresurgentes,vol.I,IIandIII,Publ.Math.Orsay,1985. ´[15]JEcalle,inBifurcationsandperiodicorbitsofvectorfields,NATOASISeries,Vol.408,1993[16]HFlashkaandACNewellMonodromyandspectrumpreservingtransformations Commun.Math.Phys.76pp.65–116(1980).[17]LFuchsSurquelques´equationsdiff´erentielleslin´eairesdusecondordreC.R.Acad. Sci.,Paris141pp.555-558(1905).[18]MOGonz´alesComplexAnalysis:SelectedTopicsMarcelDekkerInc.,NY,Basel, HongKong(1991).[19]RKuik,Transseriesindifferentialanddifferenceequations,PhDThesis,University ofGroningen,ISBN90-367-1771-x(2003). INTEGRABILITYOFDIFFERENCEEQUATIONS33 [20]S.KowalevskiSurleprobl`emedelarotationd’uncorpssolideautourd’unpoint fixe,ActaMath.,12H.2,pp.177–232(18)[21]S.KowalevskiM´emoiresuruncasparticulierduprobl`emed’uncorpspesantautour d’unpointfixe,o`ul’integrations’effectue`al’aidedefonctionsultraelliptiquesdutempsM´emoirespr´esent´espardiverssavants`al’AcademiedesSciencesdel’InstitutNationaldeFrance,Paris31pp.1–62(10)[22]MDKruskalandPAClarksonThePainlev´e-Kowalevskiandpoly-Painlev´etests forintegrabilityStud.Appl.Math.86no.2,pp.87–165(1992).[23]BGambierSurles´equationsdiff´erentiellesdusecondordreetdupremierdegr´e dontl’int´egraleg´en´eraleest`apointscritiquesfixesActaMath.33pp1–55(1910).[24]BGrammaticosandARamaniDiscretePainlev´eequations:derivationandproper-tiesIn“ApplicationsofAnalyticandGeometricMethodstoNonlinearDifferentialEquations”,ed.PAClarkson,NATOASISeriesC,pp299–313(1993).[25]ARIts,ASFokasandAAKapaevOntheasymptoticanalysisofthePainlev´e equationsviatheisomonodromymethodNonlinearity7no.5,pp.1921–1325(1994).[26]NJoshiIrregularsingularbehaviourinthefirstdiscretePainlev´eequation,in SymmetriesandIntegrabilityofDifferenceEquationsIII,DLeviandORagnisco(eds),pp.237–243,CRMProc.LectureNotes,25,Amer.Math.Soc.,Providence,RI,(2000).[27]HLevyandFLessmanFiniteDifferenceEquations,DoverPublicationsInc.New York,1992.[28]RNevanlinnaLeth´eor`emedePicard-Boreletlath´eoriedesfonctions m´eromorphes,ChelseaPub.Co.,NewYork,(1974).[29]PPainlev´eM´emoiresurles´equationsdiff´erentiellesdontl’integraleg´en´eraleestuniformeBull.Soc.Math.France28pp201–261(1900).[30]PPainlev´eSurles´equationsdiff´erentiellesdusecondordreetd’ordresup´erieur dontl’integraleg´en´eraleestuniformeActaMath.25pp.1–85(1902).[31]WRudinRealandComplexAnalysis,McGraw-Hill(1987). [32]NSteinmetzRationaliteration.ComplexAnalyticDynamicalSystemsWalterdeGruyter,Berlin;NewYork(1993). ReceivedMonth199X. *TitleofPaper* *Author’sName* *Institute* arXiv:math/0608308v1 [math.DS] 13 Aug 2006Bibliography ReceivedMonth199X. c199XJohnWiley&Sons,Inc. CommunicationsonPureandAppliedMathematics,Vol.000,0001–0001(199X) CCC0010–30/98/000001-01
因篇幅问题不能全部显示,请点此查看更多更全内容