全等三角形之三垂直模型
来源:保捱科技网
全等三角形之三垂直模型模块一:三垂直模型1.已知:如图(1),AB=BC,AB⊥BC,AE⊥BD于E,CD⊥BD,求证:EDAECDng at -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 1a time and All t2.已知:如图(2),AB=BC,AB⊥BC,AE⊥BD于F,BC⊥CD,求证:ECABCDhings in their being are good for somethin 3. 已知:如图(3),AB=EC,AE⊥ED,BE⊥AB,CD⊥CE,求证:BCABCD4. 如图,ABC是等腰直角三角形,DE过直角顶点A,DE90,则下列结论正确的个数有( )①CD=AE;②12;③34;④AD=BE.的延长线于点F,求证:AC=2BF.ng at -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 2a time a6. 如图,已知RtABC中,ACB90,AC=BC,D是BC的中点,CEAD,垂足为E,BFAAC,交CEndA. 4cm B. 8cm All t hinC. 9cm gs in thA. 1 B. 2 C. 3 D. 45. 如图所示,ABBC,CDBC,垂足分别为B、C,AB=BC,E为BC中点,AEBD于F,若CD=4cm,则AB的长度为( )D. 10cm eir being are good for somethin 7. 如图,在直角梯形ABCD中,ABC90,ADABC,AB=BC,E是AB的中点,CEBD.求证:AE=AD.模块二:勾股定理的证明如果直角三角形的两条直角边长分别为a,b ,斜边长为c,那么a2b2c2.a2b2c2 at 8. 如图,直线l过等腰直角三角形ABC顶点B, A、C两点到直线l的距离分别是3和4,则AB的长是 a tim以毕达哥拉斯内弦图为例:1(ab)24abc2(等面积法)2a22abb22abc2e and All things in their being are goo d for.ng-------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 3 somethin 9. 如图,直线l1,,l2l3分别过正方形ABCD的三个顶点A、B、D,且相互平行,若l1,l2之间的距离为1,.l2,l3的距离为1,则正方形ABCD的面积是 10. 如图,AEAB且AE=AB,BCCD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积 . A. 50 B. 62 hings in thC. 65 eir beng at -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 4a time and All ting are gD. 68ood for somethin