保捱科技网
您的当前位置:首页初中数学复习资料大全

初中数学复习资料大全

来源:保捱科技网
初中数学总复习资料

⒈数与式

⑴有理数:有限或不限循环性数(无理数:无限不循环小数) ⑵数轴:“三要素” ⑶相反数

⑷绝对值:│a│= a(a≥0) │a│=-a(a<0) ⑸倒数 ⑹指数

① 零指数:a=1(a≠0) ②负整指数: (a≠0,n是正整数) ⑺完全平方公式:(ab)a2abb ⑻平方差公式:(a+b)(a-b)=a⑼幂的运算性质: ①a·a=am

nmn22220b2

②a÷a=amnmn ③(a)=amnmnanan ④(ab)=ab ⑤()n⑽

bbnnn科学记数法:a10(1≤a<10,n是整数) ⑾算术平方根、平方根、立方根、 ⑿

nacmacma(bdn0)等比性质: bdnbdnb⒉方程与不等式 ⑴一元二次方程

①定义及一般形式:axbxc0(a0) ②解法: 1.直接开平方法. 2.配方法 3.公式法:x1,24.因式分解法. ③根的判别式:

2bb24ac2(b4ac0)

2ab24ac>0,有两个解。 b24ac<0,无解。

b24ac=0,有1个解。

④维达定理:x1bcx2,x1x2

aa⑤常用等式:x1x2(x1x2)2x1x2 (x1x2)(x1x2)4x1x2 ⑥应用题

1.行程问题:相遇问题、追及问题、水中航行:v顺船速水速;v逆船速水速 2.增长率问题:起始数(1+X)=终止数

3.工程问题:工作量=工作效率×工作时间(常把工作量看着单位“1”)。 4.几何问题

⑵分式方程(注意检验) 由增根求参数的值: ①将原方程化为整式方程

②将增根带入化间后的整式方程,求出参数的值。 ⑶不等式的性质 ①a>b → a+c>b+c ②a>b → ac>bc(c>0) ③a>b → acb,b>c → a>c ⑤a>b,c>d → a+c>b+d. ⒊函数 ⑴一次函数

①定义:y=kx+b(k≠0)

②图象:直线过点(0,b)—与y轴的交点和(-b/k,0)—与x轴的交点。 ③性质:

k>0,直线经过一、三象限,y随x的增大而增大。 k<0,直线经过二、四象限,y随x的增大而减小。 当b>0时,直线必通过一、二象限。 当b=0时,直线通过原点。

当b<0时,直线必通过三、四象限。 ④图象的四种情况:

22222y o x y o x y o x y o x ⑵正比例函: ①定义:y=kx(k≠0) ②图象:直线(过原⑶反比例函数 ①

点)

(k>0,b>0) (k<0,b>0) (k>0,b<0) (k<0,b<0) ykkx1 (k≠0). x②图象:双曲线(两支) ③性质:

k>0时,两支曲线分别位于第一、三象限,y的值随x值的增大而减小。 k<0时,两支曲线分别位于第二、四象限,y的值随x值的增大而增大。; ④两支曲线无限接近于坐标轴但永远不能到达坐标轴。 ⑷二次函数.

①定义:

ya(xh)2k(a0)(顶点式)yax2bxc(a0)(一般式)

②图象:抛物线

yax2bxc(a0) 顶点: ya(xh)2k(a0)顶点:(h,k)

③性质:

⑴当a>0时,开口向上;当a<0时,开口向下。|a|越大,则抛物线的开口越小。

⑵当a与b同号时(ab>0),对称轴在y轴左边;当a与b异号时(ab<0),对称轴在y轴右边;当b=0时,对称轴在y轴。(左同右异)

⑶当c>0时,与y轴交于正半轴;当c<0时,与y轴交于负半轴;当c=0时,与y轴交于原点。 ④平行移动的规律:

当h>0时,y=ax向右平行移动h个单位得到y=a(x-h) 当h<0时,则向左平行移动|h|个单位得到。

当h>0,k>0时,y=ax向右平行移动h个单位,再向上移动k个单位,得到y=a(x-h) +k 当h>0,k<0时,y=ax向右平行移动h个单位,再向下移动|k|个单位,得到y=a(x-h) +k 当h<0,k>0时,y=ax向左平行移动|h|个单位,再向上移动k个单位,得到y=a(x-h) +k 当h<0,k<0时,y=ax向左平行移动|h|个单位,再向下移动|k|个单位,得到y=a(x-h)^2+k

㈡空间与图形

⒈三角形

⑴面积公式:底乘以高除以2 ⑵“四心”:

①垂心:三角形三条高的交点。

②内心:三角形三条内角平分线的交点,即内接圆的圆心。 ③重心:三角形三条中线的交点。

④外心:三角形三条边的垂直平分线的交点,即外接圆的圆心。 ⑶三角形边与边的关系:

两边之和大于第三边。(较短的两条边) 两边之差小于第三边。(最长的边和最小的边) ⑷三角形内角和、外角与内角的关系: 三角形内角和为180度。

三角形的一个外角等于和它不相邻的两个内角和。 三角形的一个外角大于任何一个和它不相邻的内角。 ⑸证明 直 角 三 角 形 判定及性质 ①在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。 ②如果三角形一边上的中线等于这条斜边的一半,那么这条边所对的角是直角。 ①直角三角形两个锐角互余。 ②直角三角形斜边上的中线等于斜边的一半。 ③在直角三角形中,两条直角边a、b的平方和等于斜边c的平方,即a2+b2=c2 。 等腰 三角形 ①等腰三角形的两个底角相等。(等边对等角) ②等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合。(三线合一) 等边三角形 ①有一个角等于60°的等腰三角形是等边三角形。 相 似 三角形 ①相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比。 ②相似三角形周长的比等于相似比。 ③相似三角形面积的比等于相似比的平方。 ④相似三角形的对应角相等,对应边成比例。 ①三边对应相等的两个三角形全等。(SSS ) ②两边及其夹角对应相等的两个三角形全等。(SAS) ③两角及其夹边对应相等的两个三角形全等。(ASA) ④两角及其中一角的对边对应相等的两个三角形全等。(AAS) ⑤有斜边和一条直角边对应相等的两个三角形全等。(HL) ⑥全等三角形的对应边相等、对应角相等。 全 等 三 角 形 三角形 ①连结三角形两边中点的线段叫做三角形的中位线。 中位线 ⒉特殊的角: ⑴对顶角 ⑵余角 ⑶补角 ⒊线段 垂直平分线 梯形中位线 平行线 垂线段 角平分线 ⒋三角函数 ⑴ 锐角三角函数:

∠A的对边∠A的邻边∠A的对边

正弦:sin A= 余弦:cos A= 正切:tan A=

斜边斜边∠A的邻边⑵互余两角的三角函数:

①sin A=co s(90°-A) cos A=sin(90°-A) ②tan A=cot(90°-A) cot A=tan(90°-A)

定理 ①线段的垂直平分线上的点到这条线段的两个端点的距离相等。 ①梯形的中位线平行于两底,并且等于两底和的一半。 ①内错角相等。②同旁内角互补。③同位角相等。 ①点到直线的距离,垂线段最短。 ①角平分线上的点到这个角的两边的距离相等。 ②三角形的中位线平行与第三边,并且等于它的一半。 ⑶同一锐角的三角函数关系: sinA+cosA=1 tanA·cotA=1 tanA=⑷特殊角的三角函数值: 三角函数 30° 2

2

sinA

cosA

sinα 1 22 23 2cosα 3 22 21 2tanα 3 31 45° 60° 3 ⑸对实际问题的处理:

①坡度:Sin A的值越大,梯子越陡;Cos A的值越小,梯子越陡。 ②方位角(上北下南左西右东) ③俯、仰角:

⒌四边形 ⑴面积公式:

①梯形,上底加下底的和乘以高除以2 ②菱形,对角线乘以对角线除以2 ③平行四边行,底乘以高 ⑵ 平 行 四 边 形 判定 ①两组对边分别平行。 ②两组对边分别相等。 ③两组对角分别相等。 ④两条对角线互相平分。 ⑤一组对边平行且相等。 ⑥一组对角相等且一组对边平行。 ①有一组邻边相等的平行四边形。 ①具有平行四边形的一切性质。 ②四条边都相等。 ③对角线互相垂直,每条对角线平分一组对角。 ④既是轴对称图形,也是中心对称图形。 ①对角相等。 ②两组对边平行且相等。 ③两组对角线互相平分。 性质 菱 ②两条对角线互相垂直的平行四边形 形。 矩 形 ③四条边都相等的四边形。 ①有一个角是直角的平行四边形。 ①具有平行四边形的一切性质。 ②对角线相等的平行四边形。 ③有三个角是直角的四边形。 ②四个角都是直角。 ③对角线相等。 ④既是轴对称图形,也是轴对称图形。 ①有一组邻边相等的矩形。 ②有一个角是直角的菱形。 正方③有一组邻边相等且有一个角是直形 角的平行四边形。 ④对角线互相垂直平分且相等的四③既是轴对称图形,也是中心对称图形。 边形。 等 腰 ①一组对边平行且另一组对边相等。 ①两条腰相等。 梯 ②同一底上的两个底角相等的梯形。 ②对角线相等。 形 ⑶顺次连结各边中点得到的图形:

①顺次连结对角线相等的四边形各边中点得菱形。 ②顺次连结对角线互相垂直的四边形各边中点得矩形。 ③顺次连结对角线垂直相等的四边形各边中点得正方形。 ④顺次连结对四边形各边中点得平行四边形。 ⒍圆

⑴垂径定理:

过圆心,垂直于弦,平分弦,平分弦所对的优劣弧。(知二推三) ⑵与圆有关的角:

定义 性 质 关系

⑶圆和圆的位置关系:(圆心距d ,半径分别为R r 且 R> r)

外离:d>R+r 外切:d=R+r 相交:R-rR 相切:d=R 相交:d⑸点和圆的位置关系:(半径为r ,某一点到圆心O的距离为d) 点在圆外:d> r 点在圆内:d⑺概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。 ⒎尺规作图要求

⑴作一条线段等于已知线段

在同圆或等圆中,相等的圆心(周)角所对的弧相等,所对的弦相等,所对的弦的弦心距也相等。 一条弧所对的圆周角等于它所对的圆心角的一半。 圆心角 顶点在圆心的角 圆心角的度数等于它的弧度。 圆周角 顶点在圆周上的角 直径所对的圆周角为90度。 ①具有平行四边形、矩形、菱形的一切性质。 ②对角线互相垂直、平分且相等。 ⑵作一个角等于已知角 ⑶作角的平分线 ⑷作线段的垂直平分线 ⑸作三角形

①已知三边作三角形

②已知两边及其夹角作三角形 ③已知两角及其夹边作三角形

④已知底边及底边上的高作等腰三角形

⑹过一点、两点和不在同一条直线上的三点作圆 ⒏视图与投影

⑴直棱柱、圆柱、圆锥、球的三视图

⑵轴对称图形:等腰三角形、矩形、菱形、等腰梯形、正多边形、圆 ⑶中心对称图形:矩形、圆、 ⑷图形的平移和旋转 ⑸图形的相似:

㈢概率与统计

⒈统计 ⑴重要概念

①总体:考察对象的全体。 ②个体:总体中每一个考察对象。 ③样本:从总体中抽出的一部分个体。 ④样本容量:样本中个体的数目。

⑤众数:一组数据中,出现次数最多的数据。

⑥中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)。

⑵扇形统计图、条形统计图、折线统计图 ⑶计算方法 ①平均数:x1(x1x2xn) nx1f1x2f2xkfk(f1f2fkn)

n②加权平均数:x③样本方差:⑴s21[(x1x)2(x2x)2(xnx)2] n④样本标准差:ss2

⑤极差:最大的数减去最小的数 ⒉概率

①列表法、画树状图法

中考数学总复习资料

代数部分

第一章:实数

基础知识点:

一、实数的分类:

正整数整数零负整数有理数数有限小数或无限循环小实数 正分数分数负分数正无理数无理数无限不循环小数负无理数1、有理数:任何一个有理数总可以写成的重要特征。

2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、sin45°等。

3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。 二、实数中的几个概念

1、相反数:只有符号不同的两个数叫做互为相反数。

(1)实数a的相反数是 -a; (2)a和b互为相反数a+b=0 2、倒数:

(1)实数a(a≠0)的倒数是

p的形式,其中p、q是互质的整数,这是有理数q1;(2)a和b 互为倒数ab1;(3)注意0没有倒数 a3、绝对值:

(1)一个数a 的绝对值有以下三种情况:

a,a0,a,a0a0a0

(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。 4、n次方根

(1)平方根,算术平方根:设a≥0,称a叫a的平方根,a叫a的算术平方根。

(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。 (3)立方根:3a叫实数a的立方根。

(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。

三、实数与数轴

1、数轴:规定了原点、正方向、单位长度的直线称为数轴。原点、正方向、单位长度是数轴的三要素。

2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。实数和数轴上的点是一一对应的关系。 四、实数大小的比较

1、在数轴上表示两个数,右边的数总比左边的数大。

2、正数大于0;负数小于0;正数大于一切负数;两个负数绝对值大的反而小。 五、实数的运算 1、加法:

(1)同号两数相加,取原来的符号,并把它们的绝对值相加;

(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。可使用加法交换律、结合律。 2、减法:

减去一个数等于加上这个数的相反数。 3、乘法:

(1)两数相乘,同号取正,异号取负,并把绝对值相乘。

(2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。 (3)乘法可使用乘法交换律、乘法结合律、乘法分配律。 4、除法:

(1)两数相除,同号得正,异号得负,并把绝对值相除。 (2)除以一个数等于乘以这个数的倒数。

(3)0除以任何数都等于0,0不能做被除数。 5、乘方与开方:乘方与开方互为逆运算。

6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。无论何种运算,都要注意先定符号后运算。 六、有效数字和科学记数法

1、科学记数法:设N>0,则N= a×10(其中1≤a<10,n为整数)。

2、有效数字:一个近似数,从左边第一个不是0的数,到精确到的数位为止,所有的数字,叫做这个数的有效数字。精确度的形式有两种:(1)精确到那一位;(2)保留几个有效数字。 例题:

例1、已知实数a、b在数轴上的对应点的位置如图所示,且ab。 化简:aabba

分析:从数轴上a、b两点的位置可以看到:a<0,b>0且ab 所以可得:

解:原式aabbaa

n例2、若a(),3433b()3,433c()3,比较a、b、c的大小。

4433分析:a()1;b1且b0;c>0;所以容易得出:

34a<b<c。

解:略

例3、若a2与b2互为相反数,求a+b的值 分析:由绝对值非负特性,可知a20,又由题意可知:a2b20 b20,

所以只能是:a–2=0,b+2=0,即a=2,b= –2 ,所以a+b=0 解:略

例4、已知a与b互为相反数,c与d互为倒数,m的绝对值是1,求解:原式=0110

abcdm2的值。 m11ee1994ee 0.1251994 (2)例5、计算:(1)822解:(1)原式=(80.125)199422119941

1111eeeeeeee=e11 (2)原式=222e2

因篇幅问题不能全部显示,请点此查看更多更全内容