ACTAECOLOGICASINICA
生态学报
Vol.41,No.12Jun.,2021
DOI:10.5846/stxb202002160277
黄小娟,侯扶江.高寒典型草原主要物种的株高和盖度预测种群和群落地上生物量.生态学报,2021,41(12):4942⁃4952.EcologicaSinica,2021,41(12):4942⁃4952.
HuangXJ,HouFJ.Plantheightandcoverageofmainspeciespredictabovegroundbiomassofpopulationandcommunityonalpinetypicalsteppe.Acta
高寒典型草原主要物种的株高和盖度预测种群和群落地上生物量
黄小娟1,2,侯扶江1,2,∗
1兰州大学草地农业科技学院,草地农业生态系统国家重点实验室,兰州 7300202农业农村部草牧业创新重点实验室,兰州 730020
摘要:为快速、准确、无破坏地测定草原地上生物量,在祁连山高寒典型草原植物生长旺季,观测了冬季和春秋季放牧地60个样方内各物种的株高、盖度等生长指标。以冬季牧地紫花针茅(Stipapurpurea)、醉马草(Achnatheruminebrians)、赖草(Leymussecalinus)、扁穗冰草(Agropyroncristatum)、二裂委陵菜(Potentillabifurca)、银灰旋花(Convolvulusammannii)6个主要物种的株高、盖度、株高和盖度的乘积为自变量,分别预测同物种、其他物种和群落地上生物量。用春秋季牧场的数据验证模型的精确性和稳定性。结果表明:主要物种的生长指标可预测其自身、其他物种和群落地上生物量。对自身种群,株高和盖度乘积的复合因子预测效果最好;4种禾草对其他物种、二裂委陵菜对菊科植物种群,株高、盖度单因子预测效果优于复合因子;6个主要物种单独或2—6个种结合均可预测群落地上生物量,但是以6个物种株高和盖度的乘积同时预测时决定系数最大,可解释群落地上生物量89.5%的变异,为高寒典型草原群落地上生物量最优预测模型。关键词:种群;群落;优势种;伴生种;放牧
Plantheightandcoverageofmainspeciespredictabovegroundbiomassofpopulationandcommunityonalpinetypicalsteppe
1StateKeyLaboratoryofGrasslandAgro⁃ecosystems,CollegeofPastoralAgricultureScienceandTechnology,LanzhouUniversity,Lanzhou730020,China2KeyLaboratoryofGrasslandLivestockIndustryInnovationMinistryofAgricultureandRuralAffairs,LanzhouUniversity,Lanzhou730020,China
HUANGXiaojuan1,2,HOUFujiang1,2,∗
Abstract:Inordertofastly,accuratelyandnon⁃destructivelytopredictthebiomassonalpinetypicalsteppeinQilianMountains,growthindexesofplantsspeciessuchasplantheight,coveragewereobservedduringthegrowingseasonundertwodifferentpastures,whichareWintergrazinglandandspringandautumngrazingland.Intotal60quadratsweresuchasStipapurpurea,Achnatheruminebrians,Leymussecalinus,Agropyroncristatum,PotentillabifurcaandConvolvulusinthesamequadratwereusedtodevelopthepredictedmodel,whichwasverifiedandcorrectedbyapplyingthecollectedspeciescanpredicttheabovegroundbiomassofthemselves,otherspeciesandcommunities.Thecompositefactorofplant
measured.TakingthePlantheight,coverage,theproductofplantheightandcoverageof6majorspeciesinwinterpasture,ammanniiasindependentvariable,andthemainpopulation,otherpopulationsandabovegroundbiomassofthecommunitydataunderVegetationdataofSpringandAutumnPasture.Theresultsshowedthatthegrowthindicesofrepresentativeheightandcoverageproductwasthebestforpredictingthepopulation.Thesinglefactorofplantheightandcoveragewasbetterthanthecompoundfactorinpredictingtheotherpopulationsofthefourgrassesandthecompositaepopulationsofthe
基金项目:祁连山山地⁃荒漠⁃绿洲系统耦合模式研究(XDA20100102);教育部创新团队发展计划(IRT_17R50)收稿日期:2020⁃02⁃16; 网络出版日期:2021⁃04⁃21∗通讯作者Correspondingauthor.E⁃mail:cyhoufj@lzu.edu.cn
http://www.ecologica.cn
12期 黄小娟 等:高寒典型草原主要物种的株高和盖度预测种群和群落地上生物量 4943
Potentillabifurca.Sixmainspeciesaloneortwotosixkindsofcombiningbothpredictablecommunitybiomassontheground,buttheproductof6speciesofplantheightandcoveragetoparticipateinthepredictionofregressioncurveatthesametime,decisioncoefficientisthelargest,canexplaincommunitybiomassof89.50%ofthevariationontheground,canbeusedasatypicalalpinesteppecommunitybiomassoptimalpredictionmodelontheground.KeyWords:population;community;dominantspecies;accompanyingspecies;grazing
草原是全球面积最大的陆地生态系统,是世界公认的三大人类粮食生产基地之一[2⁃3],其地上生物量一定程度上反映了家畜生产力和生态承载力[4⁃7]。地上生物量的快速、准确、无破坏、少干扰测量是世界难题,也是草原健康管理与合理放牧的基础,对于保障人类生态和食物安全具有重要作用。
植物,称量样地的地上生物量[9⁃11];另一种是间接法,利用大量样方法实测的生物量数据,建立植物易测指标与遥感、无人机等参数的关系模型,尤其适合较大时空尺度的地上生物量监测[12⁃15]。样方或样线法简单易操作,在中小尺度上准确性高,但破坏地表植被、耗费人力
[16]
生物量是生命的基本表征,是生态系统物质循环和能量流动的载体[1],也是科学研究的基本参数之一。
草原地上生物量的测定方法主要有两种[8]:一种是直接法,即通过科学地设置样方或样线,刈割样方内
。野外的研究区面积有限,长期固定样方,频繁移
动样点影响结果的准确性[17⁃18],直接法准确、多,预测模型具有一定优势。国内外关于地上生物量的预测,植被多为乔木和灌木,对草类植物的研究较少[19⁃20],预测模型也主要是对同一物种,很少涉及某一物种预测其它物种,或少数主要物种预测群落地上生物量。
体现[21]。由于光照、热量、水分、肥力等空间资源有限,物种之间均会对相同环境产生趋同或趋异响应,并在纵向和横向生长上表现出密切的数量关系[22]。平均不到20%的少数主要优势种群,对群落生物量的贡献率却超过50%
[23]
株高和盖度表征地上生物量的纵向和横向分布,是种群个体竞争的体现,两者的乘积则是竞争力的综合
的源区、水源涵养地和补给区[24],是人类生态安全的重要屏障。为此,选定祁连山高寒典型草原的代表性植物种,测定较为容易的植被生长指标,快速、准确预测群落地上生物量,可为草原生产力评估和生态环境保护提供基础手段。1 材料与方法1.1 研究区自然概况
位于甘肃省肃南裕固族自治县马鹿(Cervuselaphuskansuensis)养殖场(38.8°N,99.6°E),地处祁连山中段北坡,是青藏高原牧区向河西走廊农区的过渡带。海拔2650—2950m,土壤为山地栗钙土,年均气温3.6℃,年均降水量253.0mm,蒸发量1784.6mm。牧草4、5月开始返青,7、8月进入生长旺盛期。根据草原综合顺序分类法,属寒温微干山地草原类[25],主要物种有紫花针茅(Stipapurpurea)、赖草(Leymussecalinus)、醉马草(Achnatheruminebrians)、扁穗冰草(Agropyroncristatum)等,草地农业系统类型是天然草原⁃家畜综合生产1.2 样地设置系统[25]。
1999年8月,根据对甘肃马鹿放牧行为的观测,在距离冬季牧场和春秋季牧场大门口50、350、650、950、
,它们的株高、盖度等生长指标可以预测群落地上生物量。高寒草原是世界上主要大江大河
1250、1550m处,沿直线向牧场深处选择地势平坦、植被均匀地段,分别设置1个面积为100m×100m的样地[26⁃27]。每个样地设置5个面积为1m×1m的样方,两个牧场各30个。每个样方内的物种随机选取5株,分65℃恒温箱烘至恒重,称取地上生物量。1.3 预测模型的建立
根据物种重要值排序(表1),选取紫花针茅、赖草、扁穗冰草、醉马草、银灰旋花、二裂委陵菜6个主要物
http://www.ecologica.cn
种测定其株高、盖度等指标,计算其平均值作为该种群的株高(H)和盖度(C)。分种齐地面刈割样方内植物,
4944 生 态 学 报 41卷
种。将其株高(H)、盖度(C)及二者的乘积(CH)逐一与其他种群地上生物量做相关性分析,选取P<0.05的种群,分别以其株高(H)、盖度(C)、株高和盖度的乘积(CH)预测自身物种和其他物种地上生物量。从6个主要物种中随机选取1—6个物种的组合,用其生长指标预测群落地上生物量。
表1 冬季放牧地植物种重要值
Table1 Theimportantvaluesofeachspeciesinwintergrazingland
排序Ranking123456781011129
物种Species
紫花针茅Stipapurpurea赖草Leymussecalinus扁穗冰草Agropyroncristatum
重要值Importantvalue22.4617.2512.176.5403.9532.5652.1482.0841.9841.8461.7729.02
排序Ranking131415161718192021222324
物种Species
蓝白龙胆Gentianaleucomelaena茵陈蒿Artemisiacapillaris蚓果芥Torulariahumilis高山紫菀Asteralpinus冷蒿Artemisiafrigida狼紫草Lycopsisorientalis
重要值Importantvalue0.9880.9740.8530.7490.5280.4760.4230.3620.2870.2640.1830.152
醉马草Achnatheruminebrians二裂委陵菜Potentillabifurca波伐早熟禾Poapoophagorum
银灰旋花Convolvulusammannii高山唐松草Thalictrumalpinum芨芨草Achnatherumsplendens星毛委陵菜Potentillaacaulis紫花棘豆Oxytropissubfalcata
阿尔泰狗娃花Heteropappusaltaicus蒲公英Taraxacummongolicum垂穗披碱草Elymusnutans多根葱Alliumpolyrhizum碱韭Alliumpolyrhizum山苦荬Ixeridiumchinense
乳白黄耆Astragalusgalactites
物种重要值=(相对密度+相对盖度+相对频度)/3
自身物种地上生物量预测方程如下:
yi=axi+b
(1)(2)
式中,yi为物种i的地上生物量,xi为物种i的H、C或CH,a、b为回归常数。
其他物种地上生物量预测方程如下:
yj=axj+b
式中,yj为物种j的地上生物量,Xj为与物种j的H、C或CH。
群落地上生物量预测方程为:
(3)
1.4 预测模型的验证
式中,Y为群落地上生物量,Xi为物种i的H、C或CH,ai为拟合常数。
Y=a1X1+a2X2+…+aiXi+b(4)
将春秋牧场的植被数据代入所建预测模型中,通过决定系数、P值、平均相对误差绝对值RMA、总相对误差RS等验证预测模型的稳定性和普适性,RMA应小于30%[28]RS应小于10%
总相对误差(RS):
平均相对误差绝对值(RMA):
^i)/∑y^i]×100%RS=[(∑yi-∑y
[29⁃30]
(5)(6)
1×RMA=N
1.5 数据分析
^i为地上生物量预测值式中:N为重复样本数,yi为地上生物量实测值,y
∑i
^iyi-y^iy
×100%
采用SPSS20.0进行模型方程的回归、检验和验证。非参数检验分析显示数据总体服从正态分布。通过Pearson相关分析,筛选出与6个主要物种的3个任意生长指标具有显著相关性(P<0.05)的其他物种。运用广义线性模型,建立主要物种生长指标对种群和群落地上生物量的预测模型。
http://www.ecologica.cn
12期 黄小娟 等:高寒典型草原主要物种的株高和盖度预测种群和群落地上生物量 4945
2 结果与分析
2.1 种群地上生物量预测模型与验证2.1.1 主要物种地上生物量预测模型
主要物种地上生物量的预测均显著(P<0.05),地上生物量随株高、盖度的增加而线性上升,表明生物量在垂直和水平的空间分布较为均匀(图1,图2)。斜率反映了生长指标对地上生物量的敏感性,斜率越大说明物种对水平空间或垂直空间的竞争能力越强。地上生物量对株高响应的敏感性为紫花针茅>扁穗冰草>银灰旋花>赖草>醉马草>二裂委陵菜(图1),对盖度响应的敏感性为赖草>银灰旋花>扁穗冰草>紫花针茅>二裂委陵菜>醉马草(图2)。
图1 主要物种株高预测自身种群地上生物量
Fig.1 Theplantheightofmainspeciespredictsabovegroundbiomassoftheirownpopulations
株高和盖度的乘积一定程度上是种群体积的测度,代表着种群的空间的综合竞争力。主要物种地上生物量均随株高和盖度乘积的增加而上升,地上生物量对株高和盖度乘积的敏感性为银灰旋花>赖草>二裂委陵菜>扁穗冰草>紫花针茅>醉马草(图3),斜率大小反映了种群空间竞争能力的强弱。
主要物种株高和盖度的乘积对地上生物量的预测绝大多数在P<0.001水平显著(表2),平均相对误差绝对值RMA<30%,总相对误差RS分布在-2%—8%之间,在模型允许误差范围内,拟合优度高。株高对自身种群地上生物量的预测,除银灰旋花、醉马草和二裂委陵菜外,其余均在P<0.05水平显著,大部分RMA>30%,预测误差较大。盖度对种群地上生物量的预测,RMA除紫花针茅外均大于30%,仅有紫花针茅、赖草和银灰旋花的RS<10%,误差较大。
2.1.2 其他物种地上生物量预测模型
松草地上生物量决定系数最高(R2=0.7674),紫花针茅盖度预测多根葱地上生物量决定系数最低(R2=对菊科植物种群的预测,株高、盖度单因子预测效果较优。
主要物种生长指标对其他物种地上生物量的最优预测模型为一元线性方程(表3),赖草株高预测高山唐
0.501)。4种禾本科牧草的株高、盖度对禾本科、菊科和百合科植物的地上生物量预测效果较好,二裂委陵菜
验证方程均在P<0.001水平显著(表4)。RMA分布在11%—29%之间,均小于30%。RS<10%,预测精
http://www.ecologica.cn
4946 生 态 学 报 41卷
图2 主要物种盖度预测自身种群地上生物量
Fig.2 Thecoverageofmainspeciespredictstheabovegroundbiomassoftheirownpopulations
图3 主要物种株高和盖度的乘积预测自身种群地上生物量
Fig.3 Plantheightandcoverageofmainspeciespredictsabovegroundbiomassoftheirownpopulations
度高,稳定性和普适性好。
2.2 群落地上生物量预测模型与验证
群落地上生物量预测模型均在P<0.001水平显著(表5)。以株高和盖度的乘积为自变量建立的预测模型决定系数高于株高或盖度单因子。随物种个数从1个逐渐增加到6个,模型的决定系数也从0.399增加到
http://www.ecologica.cn
12期 黄小娟 等:高寒典型草原主要物种的株高和盖度预测种群和群落地上生物量 4947
0.895,物种每增加1个,决定系数平均增加0.3326(y=0.1042x+0.2284,R2=0.896,N=18)。6个物种株高和测模型。
表2 主要物种地上生物量预测模型精度检验
Table2 Accuracytestofabovegroundbiomasspredictionmodelofmainspecies
生长指标Growthindex
H
主要物种Mainspecies
紫花针茅Stipapurpurea赖草Leymussecalinus
银灰旋花Convolvulusammannii醉马草Achnatheruminebrians二裂委陵菜Potentillabifurca扁穗冰草Agropyroncristatum
C
紫花针茅Stipapurpurea赖草Leymussecalinus
银灰旋花Convolvulusammannii醉马草Achnatheruminebrians二裂委陵菜Potentillabifurca扁穗冰草Agropyroncristatum
CH
紫花针茅Stipapurpurea赖草Leymussecalinus
银灰旋花Convolvulusammannii醉马草Achnatheruminebrians二裂委陵菜Potentillabifurca扁穗冰草Agropyroncristatum
H:株高plantheight;C:盖度Coverage;B:生物量Biomass
表3 其他物种地上生物量的预测
Table3 Predictionofabovegroundbiomassofotherspecies
生长指标Growthindex
1H1C1C2C
预测种群
Predictedpopulation
8B9B
预测模型
Predictionmodel
R20.66180.60870.50100.76740.63910.57020.58340.58700.55720.42850.5601
P0.0020.0000.0000.0040.0010.0000.0000.0000.0000.0020.000
样本数Samplesizes
2418151416172221231520
样本数量Samplesizes
293028302830293028302830293028302830
R
2
盖度的乘积同时预测的模型,可解释群落地上生物量89.5%的变异,为高寒典型草原群落地上生物量最优预
P0.0040.0000.0380.0560.0160.0000.0040.0050.3320.0000.0040.0000.0010.0000.0050.0000.0000.000
0.6640.8610.3700.3690.2650.9430.6640.6800.4390.8410.6170.6810.8810.9810.7840.9060.9690.978
标准误Standarderror0.01730.01260.03340.04150.02110.01620.02350.01220.01360.03140.01820.02580.02660.03270.02680.01420.03620.0145
RMA/%37333931382727358550756824212612166
RS/%-41-1-38-2144-17-6-16547486484214-2
y=0.2645x+0.2574y=0.0585x-0.4727y=0.3308x+0.5265y=0.0858x+0.5899y=0.2848x+0.2368y=0.1762x+2.4094y=0.0319x+0.0412y=0.5262x+0.7811y=0.2977x+0.4468
2H2H4H4H6H6H5C
10B11B7B7B
y=0.0279x+0.2323
12B13B12B13B7B
y=-0.0223x+1.095
1:紫花针茅Stipapurpurea2:赖草Leymussecalinus4:醉马草Achnatheruminebrians5:二裂委陵菜Potentillabifurc6:扁穗冰草Agropyroncristatum7:波伐早熟禾Poapoophagorum8:垂穗披碱草Elymusnutans9:碱韭Alliumpolyrhizum10:多根葱Alliumpolyrhizum11:高山唐松草Thalictrumalpinum12:茵陈蒿Artemisiacapillaris13:山苦荬Ixeridiumchinense
http://www.ecologica.cn
4948 生 态 学 报
表4 其他种群地上生物量预测模型精度检验
Table4 Accuracytestofotherabovegroundbiomasspredictionmodels
41卷
生长指标Growthindex1H1C1C2C
预测种群Predictedpopulation8B9B
样本数Samplesizes1716151516161515181617
R2P0.0000.0000.0000.0000.0010.0000.0000.0000.0000.0000.000
0.75230.59870.63210.48960.75440.62410.52830.77420.50010.46720.6357
标准误差Standarderror0.01860.02540.03120.02110.01940.02200.01280.02570.04700.05320.0260
RMA/%23.2516.1629.9819.4920.6520.0321.0019.5517.2226.5025.28
RS/%-11.15-9.579.307.453.505.32-9.14-8.624.354.87
2H2H4H4H6H6H5C
10B11B7B7B
-11.64
12B13B12B13B7B
表5 群落地上生物量预测模型
Table5 Abovegroundbiomasspredictionmodelofcommunity
物种数量Numberofspecies
1
生长指标Growthindex
HC
预测模型
Predictionmodel
R20.2880.3630.3990.3570.3650.4280.5580.5340.6340.5580.6350.7810.7090.7150.8210.8210.8160.895
P0.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.000
y=5.979+4.805H1
CHHC
y=12.011+1.582C1
y=35.647+0.189C1H1
2
y=-2.879+3.244H1+2.179H2
CHHC
y=-8.644+0.944C1+17.915C2
y=20.119+0.100C1H1+0.764C2H2
34
y=-10.613+3.340H1+2.207H2-1.766H3
CHHCCHH
y=-10.613+0.381C1+12.982C2+10.316C3
y=7.280+0.118C1H1+0.380C2H2+3.679C3H3
y=-0.408+3.293H1+2.353H2-1.462H3-0.220H4
y=-10.719+0.415C1+12.314C2+9.593C3+0.192C4
y=5.093+0.135C1H1+0.211C2H2+3.678C3H3+0.031C4H4y=-4.8+3.654H1+0.826H2-2.845H3+0.610H4+2.130H5y=-21.764+0.716C1+10.201C2+7.060C3-0.051C4+1.835C5
5
CHHCCH
C
y=6.297+0.160C1H1+0.202C2H2+3.713C3H3+0.030C4H4-0.049C5H5y=-8.515+3.638H1+0.756H2-1.770H3+0.643H4+0.798H5+1.985H6y=-22.350+0.767C1+9.528C2+6.538C3-0.113C4+0.404C5+1.910C6
0.053C6H6
6
y=6.802+0.158C1H1+0.235C2H2+3.82C3H3+0.29C4H4-0.092C5H5-
将春秋牧场数据代入高寒典型草原群落地上生物量最优预测模型中,得出一个预测值,以此为纵坐标,以1,拟合方程与y=x的变化趋势一致,表明预测值接近实测值,而且可以相互校正。
http://www.ecologica.cn
实测值为横坐标,做散点图并与直线y=x比较(图4)。预测值与实测值的拟合方程自变量系数为0.856,接近
12期 黄小娟 等:高寒典型草原主要物种的株高和盖度预测种群和群落地上生物量 4949
2.3 校正系数
2.3.1 主要物种地上生物量预测模型校正系数
预测值和实测值的线性关系即为模型的校正方程,斜率即为校正系数。株高对代表性物种地上生物量的预测,醉马草、二裂委陵菜的校正系数较低,分别为0.339和0.097(表6),其余在0.58以上;盖度对主要物种地上生物量的预测,校正系数分布在0.262—0.793之间;株高和盖度的乘积预测主要物种地上生物量,校正系数只有银灰旋花低于0.7,其余在0.78以上。2.3.2 其他物种地上生物量预测模型校正系数
预测模型有一半校正系数分布在0.426—0.754之间,其余均大于0.780,约有一半校正系数接近1,说明主要物种株高、盖度对其他物种地上生物量的影响较大(表7)。
图4 群落地上生物量最优预测模型精度检验
Fig.4 Accuracytestofoptimalpredictionmodelofcommunityabovegroundbiomass
表6 主要物种地上生物量预测模型校正系数
Table6 Correctioncoefficientofabovegroundbiomasspredictionmodelformainspecies
生长指标Growthindex
H
预测种群
Predictedpopulation紫花针茅Stipapurpurea赖草Leymussecalinus
银灰旋花Convolvulusammannii醉马草Achnatheruminebrians二裂委陵菜Potentillabifurca扁穗冰草Agropyroncristatum
C
紫花针茅Stipapurpurea赖草Leymussecalinus
银灰旋花Convolvulusammannii醉马草Achnatheruminebrians二裂委陵菜Potentillabifurca扁穗冰草Agropyroncristatum
CH
紫花针茅Stipapurpurea赖草Leymussecalinus
银灰旋花Convolvulusammannii醉马草Achnatheruminebrians二裂委陵菜Potentillabifurca扁穗冰草Agropyroncristatum
拟合方程Fittedequation
校正系数Correctioncoefficient0.58730.63960.61760.33930.09700.84220.58150.79280.26200.63400.38640.27170.88210.87990.66960.93220.83440.9894
标准误差Standarderror0.01340.01520.01240.01370.01290.02830.01950.02750.01260.02750.02330.04650.03610.01980.02850.01470.02300.1229
R
2
y=0.5873x+22.9y=0.6396x+8.243y=0.6176x+4.7801y=0.3393x+9.0049y=0.097x+1.5766y=0.8422x+6.7849y=0.5815x+9.87y=0.7928x+6.6843y=0.262x+3.2249y=0.634x+0.4655y=0.3864x+1.2357y=0.2717x+6.4218y=0.8821x+1.8751y=0.8799x+2.1853y=0.6696x+1.5188y=0.9322x+0.5426y=0.8344x-+3.6312y=0.9894x+0.5469
样本数量Samplesizes
293228312831293228312831293228312831
0.64100.74070.10710.13580.07080.88980.44060.46190.00610.78000.38010.46410.77710.96210.46910.28130.93840.9559
3 讨论
3.1 主要物种的生长指标预测自身种群地上生物量
株高对自身种群地上生物量的预测,预测值多大于实测值,可能是因为研究区主要物种多为禾本科植物,茎较长且直立,预测生物量容易导致生物量偏高。盖度对种群地上生物量的预测,预测值较实测值偏低,与青
http://www.ecologica.cn
4950 生 态 学 报 41卷
藏高原砂生槐(Sophoramoorcroftiana)和雪层杜鹃(Rhododendronnivale)盖度对群落地上生物量的预测结果不一致[31],可能缘于植物生长茂盛,叶片互相遮掩,观测时低估其盖度。研究的预测值和实测值具有极好的线性关系,预测偏差也可通过模型校正。株高和盖度的乘积一定程度上代表了植物对空间的占有水平,用其预测种群和群落地上生物量,精度优于株高或盖度为自变量建立的预测模型。
表7 其他物种地上生物量预测模型校正系数
Table7 Correctioncoefficientsforotherabovegroundbiomasspredictionmodels
生长指标Growthindex1H1C1C2C
预测种群Predictedpopulation8B9B
拟合方程Fittedequationy=0.536x-14.90y=0.829x+0.343y=0.514x+0.280y=0.692x-0.3824y=0.426x-0.3825y=0.432x+0.312y=0.625x+0.937y=0.78x-1.034y=0.908x-0.3864y=0.754x+0.4655y=0.834x-0.2357
校正系数Correctioncoefficient0.9360.8290.5140.6920.4260.4320.6250.7800.9080.7540.834
标准误差Standarderror0.01670.04120.02370.03250.01370.02840.01560.03850.01020.04150.0632
R
2
0.7320.5430.6720.5840.6110.6380.4360.6090.5010.5320.461
样本数量Samplesizes
1716151516161515181617
2H2H4H4H6H6H5C
10B11B7B7B
12B13B12B13B7B
3.2 主要物种的生长指标预测其他种群地上生物量
主要物种株高、盖度对禾本科、菊科、蔷薇科种群的地上生物量预测效果较好,对豆科植物的预测效果较差。可能是因为不同功能群对营养物质响应存在差异,导致家畜的选择性采食在种群之间不均匀,从而改变了牧草的竞争力[32⁃33]。高寒典型草原两个放牧季节的模型预测精度高,稳定性和普适性好,表明该预测模型受放牧季节的影响较小。该预测方法基于同一区域主要物种的株高、盖度等生长指标,草原管理方式发生变化时,整个群落的环境也会改变,而主要物种对环境变化响应敏感[34],因此用其预测其他种群地上生物量也更为准确。主要物种生长指标对其他种群地上生物量的预测,株高、盖度单因子预测效果优于二者乘积的复合因子。
3.3 种群生长指标预测群落地上生物量
主要物种的生长可以预测群落地上生物量。株高、盖度、株高和盖度的乘积对群落地上生物量的预测中,二者乘积的预测效果优于株高、盖度单因子,原因可能是研究区禾本科和菊科植物较多,茎多直立生长,二者的乘积一定程度上代表了植株的体积,能更真实地反映植株的空间竞争能力,因而预测模型精确性、稳定性好。随着共同预测的种群数量增多,预测模型的精确性也越来越高,6个主要种群共同预测时组成的回归方程可解释群落地上生物量约90%的变异,稳定性和普适性好,可作为高寒典型草原群落地上生物量最优预测模型。据此推理,对过度放牧、严重退化草原地上生物量的预测,可能会因为阔叶类毒害草的优势度增强,模型缺乏必要的验证,精确性和稳定性会下降[35],因此在退化的高寒草原,用植物株高、盖度估测地上生物量3.4 预测模型的优点
时,预测模型可能需要根据退化阶段做相应的调整[36]。
根据1999—2019年在研究区域做过多年的样方调查,在高寒典型草原,1个样方一般需要2人合作完成,2人完成1个1m×1m样方的分种测定需要2小时左右。破坏性取样对草原植被造成的破坏短期内难恢复,频繁移动样点对观测结果的准确性干扰较大,而且野外测定生物量还需要烘箱等大型设备,制约了空间大尺度的野外工作。模型预测法只需对样方内主要物种的株高和盖度等生长指标进行观测,1人即可工作,用时仅为样方法的1/24,人力资本是样方法的1/2,资金成本是样方法的1/23(表8),样本数量越大优势越明
http://www.ecologica.cn
12期 黄小娟 等:高寒典型草原主要物种的株高和盖度预测种群和群落地上生物量 4951
显。而且有利于遥感影像、无人机技术和植物生长指标结合测定地上生物量的研究[37⁃41],可操作性强,能进一步降低工作强度、提高工作效率。
表8 样方法与模型预测法计算群落地上生物量成本比较
Table8 Comparisonofabovegroundbiomasscostbetweensamplemethodandmodelpredictionmethod
耗费资本Costofcapital时间Time人力Labor材料Material总成本Captial
样方法
Samplemethod12d2人
直尺、剪刀、记录本、信封袋、天平、烘箱14650元
模型预测法
Modelpredictionmethod1d1人
直尺、剪刀、记录本650元
成本以60个1m×1m的样方计算,人工费用为350元人-1d-1
典型草原主要物种生长指标对自身物种、其他物种和群落地上生物量预测模型,应用于其他区域需对模型重新验证并校正。验证结果也可能反映出模型适用于更广泛区域,均需通过进一步研究。用株高和盖度等指标预测种群和群落生物量取得理想效果,也有可能用植物的频度、密度、分蘖、生长点和密度等体现植物生长能力的指标预测生物量,值得今后的研究中检验。
致谢:兰州大学草地农业科技学院刘永杰博士帮助写作,特此致谢。
参考文献(References):
[1] NiJ.CarbonstorageingrasslandsofChina.JournalofAridEnvironments,2002,50(2):205⁃218.
singlegrowingseason.InternationalJournalofRemoteSensing,2016,37(1):150⁃175.physiologicalfunction.CanadianJournalofRemoteSensing,2015,41(1):51⁃66.Research,1987,26:63⁃68.
由于草原环境的变化,同种植物在多个生境下的最适生物量预测模型可能会存在差异[42]。祁连山高寒
[2] JansenVS,KoldenCA,TaylorRV,NewinghamBA.QuantifyinglivestockeffectsonbunchgrassvegetationwithlandsatETM+dataacrossa[3] SmithAM,HillMJ,ZhangYQ.EstimatinggroundcoverinthemixedprairiegrasslandofsouthernAlbertausingvegetationindicesrelatedto[4] O′SullivanM,O′keefeWF,FlynnMJ.Thevalueofpastureheightinthemeasurementofdrymatteryield.IRISHJournalofAgricultural[5] López⁃DíazJE,Roca⁃FernándezAI,González⁃RodríguezA.Measuringherbagemassbynon⁃destructivemethods:areview.JournalofAgricultural[6] L′HuillierPJ,ThomsonNA.Estimationofherbagemassinryegrass/whitecloverdairypastures.ProceedingsoftheNewZealandGrassland[7] T′MannetjeL,JonesRM.FieldandLaboratoryMethodsforGrasslandandAnimalProductionResearch.AnimalFeedScienceandTechnology,[8] LiangTG,YangSX,FengQS,LiuBK,ZhangRP,HuangXD,XieHJ.Multi⁃factormodelingofabove⁃groundbiomassinalpinegrassland:[9] 马文红,方精云,杨元合,安尼瓦尔·买买提.中国北方草地生物量动态及其与气候因子的关系.中国科学:生命科学,2010,40(7):[10] 李春萍,李刚,肖春旺.异速生长关系在陆地生态系统生物量估测中的应用.世界科技研究与发展,2007,29(2):51⁃57.
24⁃30.632⁃641.
acasestudyinthethree⁃riverheadwatersregion,China.RemoteSensingofEnvironment,2016,186:164⁃172.2000,4(12):447.
Association,1988,49:117⁃122.
ScienceandTechnology,2011,1A:303⁃314.
[11] 刘陟,黄奇,周延林,李政海,孙振,柳琳秀,米红胤,樊亚娟.毛乌素沙地油蒿生物量估测模型研究.中国草地学报,2014,36(4):[12] RedjadjC,DuparcA,LavorelS,GrigulisK,BonenfantC,MaillardD,SaïdS,LoisonA.Estimatingherbaceousplantbiomassinmountain[13] 马普,陶梦,吕世海,苏德荣,叶生星,兆岩.库布齐沙地柠条叶生物量及营养估测模型.北京林业大学学报,2018,40(8):33⁃41.
境,2016,30(5):168⁃174.
grasslands:acomparativestudyusingthreedifferentmethods.AlpineBotany,2012,122(1):57⁃63.
[14] 党晓宏,高永,虞毅,蒙仲举,刘阳,王珊,吴昊,丁延龙,刘斌.库布其沙漠北缘8种荒漠灌丛生物量预测模型研究.干旱区资源与环[15] 党晓宏,高永,蒙仲举,高君亮,王珊,包蕾,余新春,王祯仪,王则宇.西鄂尔多斯地区5种荒漠优势灌丛生物量分配格局及预测模型.
http://www.ecologica.cn
4952 生 态 学 报 41卷
中国沙漠,2017,37(1):100⁃108.
[16] LuDS.Thepotentialandchallengeofremotesensing⁃basedbiomassestimation.InternationalJournalofRemoteSensing,2006,27(7):[17] OliverasI,VanDerEyndenM,MalhiY,CahuanaN,MenorC,ZamoraF,HaugaasenT.Grassallometryandestimationofabove‐ground[18] QuanXW,HeBB,YebraM,YinCM,LiaoZM,ZhangXT,LiX.Aradiativetransfermodel⁃basedmethodfortheestimationofgrassland[19] ChoMA,MathieuR,AsnerGP,NaidooL,vanAardtJ,RamoeloA,DebbaP,WesselsK,MainR,SmitLPJ,ErasmusB.Mappingtree
125:214⁃226.
abovegroundbiomass.InternationalJournalofAppliedEarthObservationandGeoinformation,2017,54:159⁃168.biomassintropicalalpinetussockgrasslands.AustralEcology,2014,39(4):408⁃415.1297⁃1328.
speciescompositioninsouthAfricansavannasusinganintegratedairbornespectralandLiDARsystem.RemoteSensingofEnvironment,2012,
[20] ZolkosSG,GoetzSJ,DubayahR.Ameta⁃analysisofterrestrialabovegroundbiomassestimationusinglidarremotesensing.RemoteSensingof[21] GaudetCL,KeddyPA.Acomparativeapproachtopredictingcompetitiveabilityfromplanttraits.Nature,1988,334(6179):242⁃243.
2013,318:13⁃21.
Environment,2013,128:289⁃298.
[22] TealdiS,CamporealeC,RidolfiL.Inter⁃speciescompetition⁃facilitationinstochasticriparianvegetationdynamics.JournalofTheoreticalBiology,[23] JørgensenSE,FathBD.EncyclopediaofEcology.Newnes,2014.
21⁃23.
[24] 杨青,陆荫,张强.基于RS和GIS技术的自然保护区生态保护状况评价———以祁连山国家级自然保护区为例.绿色科技,2019,(16):[25] 袁晓波,牛得草,吴淑娟,蒲向东,王龙,滕家明,傅华.黄土高原典型草原地上生物量估测模型.生态学报,2016,36(13):4081⁃4090.[26] 胡俊奇,陈先江,侯扶江.高寒草原群落特征对甘肃马鹿冬季放牧的响应.草业科学,2016,33(6):1028⁃1034.[27] 侯扶江.草地⁃马鹿系统的草地表现[D].兰州:甘肃农业大学,2000.
[28] 段文彬,韩永星.高寒草原生态旅游承载力研究———以甘南州当周草原为例.甘肃高师学报,2016,21(6):49⁃51.[30] 刘陟.毛乌素沙地主要灌木生物量及其模型的研究[D].呼和浩特:内蒙古大学,2014.
[29] 王化,侯扶江,袁航,万秀丽,徐磊,陈先江,常生华.高山草原放牧率与群落物种丰富度.草业科学,2013,30(3):328⁃333.
[31] ZhangL,CuiGS,ShenW,LiuXS.CoverasasimplepredictorofbiomassfortwoshrubsinTibet.EcologicalIndicators,2016,64:266⁃271.
grazingbehaviorsofTibetansheepintheQinghai⁃Tibetanplateau.Animals,2020,10(3):488.
[32] XiaoX,ZhangT,AngererJP,HouFJ.Grazingseasonsandstockingratesaffectstherelationshipbetweenherbagetraitsofalpinemeadowand[33] 侯扶江,杨中艺.放牧对草地的作用.生态学报,2006,26(1):244⁃264.
[34] 张丽,张鲜花.天山北坡山地草原类组草地植物群落特征及多样性动态分析.农业科学,2017,54(1):148⁃155.
(22):7130⁃7135.
[35] 臧润国,董鸣,李俊清,陈小勇,曾宋君,江明喜,李镇清,黄继红.典型极小种群野生植物保护与恢复技术研究.生态学报,2016,36[36] 杨烁.不同类型草地地上生物量的估测[D].杨凌:西北农林科技大学,2019.
2019,39(5):127⁃134.
[37] 赖炽敏,赖日文,薛娴,李成阳,尤全刚,黄翠华,彭飞.基于植被盖度和高度的不同退化程度高寒草地地上生物量估算.中国沙漠,′L,FajmonováZ,HájkováP,HettenbergerováE,LiCF,MerunkováK,NejezchlebováM,OtypkováZ,VymazalováM,[38] AxmanováI,Tichy
[39] BrummerJE,NicholsJT,EngelRK,EskridgeKM.Efficiencyofdifferentquadratsizesandshapesforsamplingstandingcrop.JournalofRange[40] ZhangHF,SunY,ChangL,QinY,ChenJJ,QinY,DuJX,YiSH,WangYL.Estimationofgrasslandcanopyheightandaboveground[41] 叶静芸,吴波,刘明虎,高莹,高君亮,雷渊才.乌兰布和沙漠东北缘荒漠⁃绿洲过渡带植被地上生物量估算.生态学报,2018,38(4):[42] 石松利,王迎春,李骁,周红兵.不同生育期四合木抗氧化系统的变化及生境间差异.中国沙漠,2012,32(3):771⁃779.
1216⁃1225.
biomassatthequadratscaleusingunmannedaerialvehicle.RemoteSensing,2018,10(6):851.Management,1994,47(1):84⁃89.
′D.Estimationofherbaceousbiomassfromspeciescompositionandcover.AppliedVegetationScience,2012,15(4):580⁃589.Zeleny
http://www.ecologica.cn
因篇幅问题不能全部显示,请点此查看更多更全内容