保捱科技网
您的当前位置:首页整流电路

整流电路

来源:保捱科技网
第2章 整流电路

主要内容:单相可控整流电路的工作原理、波形分析及计算,续流二极管的作用及有关波形分析。三相半波整流电路的波形分析及计算。三相全控桥的工作原理、波形分析及计算。整流变压器原、附边绕组电流有效值及容量计算。带平衡电抗器的双反星性大功率整流电路工作原理及波形分析。变压器漏抗对整流电路的影响。电路中谐波的产生、组成及抑制方法。整流电路的谐波和功率因数。整流电路的有源逆变工作原理及实施逆变的条件,逆变及防止措施。触发脉冲与主回路电压的同步,移相工作原理。

重点:单相可控整流电路的工作原理、波形分析及计算。三相半波整流电路的波形分析及计算。三相全控桥的工作原理、波形分析及计算。变压器漏抗对整流电路的影响。电路中谐波的产生、组成及抑制方法。整流电路的谐波和功率因数。整流电路的有源逆变工作原理及实施逆变的条件,逆变及防止措施。触发脉冲与主回路电压的同步,移相工作原理。

难点:三相半波整流电路的波形分析及计算。三相全控桥的工作原理、波形分析及计算。整流电路的有源逆变工作原理及实施逆变的条件,逆变及防止措施。触发脉冲与主回路电压的同步,移相工作原理。

基本要求:掌握单相各、三相半波、三相全控整流电路在不同性质负载下的工作原理及波形分析,控制角移相范围,电流有效值、平均值的计算,对相位控制触发脉冲的基本要求。理解以带平衡电抗器的双反星性电路为代表的大功率整流电路工作原理。掌握变压器漏抗对整流电路的影响。了解电路中谐波的产生、组成及拟制方法。掌握整流电路的谐波和功率因数。掌握整流电路的有源逆变工作状态及实施逆变的条件,逆变状态时的能量分析及其物理概念;掌握三相桥式逆变电路对触发脉冲的要求,逆变及防止措施。掌握触发脉冲与主回路电压的同步问题,移相工作原理及移相范围,了解集成触发器的工作原理及应用。

整流电路:出现最早的电力电子电路,将交流电变为直流电; 按组成的器件可分为不可控、半控、全控三种; 按电路结构可分为桥式电路和零式电路; 按交流输入相数分为单相电路和多相电路;

按变压器二次侧电流的方向是单向或双向,又分为单拍电路和双拍电路。

1 单相可控整流电路

主要内容:单相可控整流电路的工作原理、波形分析及计算,续流二极管的作用及有关波形分析。

重点:单相可控整流电路的工作原理、波形分析及计算。

基本要求:掌握单相控整流电路在不同性质负载下的工作原理及波形分析,控制角移相范围,电流有效值、平均值的计算,对相位控制触发脉冲的基本要求。

整流电路:出现最早的电力电子电路,将交流电变为直流电。

(1)单相桥式半波整流电路

a、带电阻负载的工作情况

Single Phase Half Wave Controlled Rectifier. 变压器T起变换电压和隔离的作用。

电阻负载的特点:电压与电流成正比,两者波形相同结合图2-1进行工作原理及波形分析。

几个概念的解释:

Ud为脉动直流,波形只在U2正半周内出现,故称“半波”整流。

采用了可控器件晶闸管,且交流输入为单相,故该电路为单相半波可控整流电路。

Ud波形在一个电源周期中只脉动1次,故该电路为单脉波整流电路。 几个重要的基本概念:

触发延迟角:从晶闸管开始承受正向阳极电压起到施加触发脉冲止的电角度,用a表示,也称触发角或 控制角。

导通角:晶闸管在一个电源周期中处于通态的电角度称为,用θ表示。 基本数量关系。 直流输出电压平均值为:

(2-1)

VT的a 移相范围为180°。

这种通过控制触发脉冲的相位来控制直流输出电压大小的方式称为相位控制方式,简称相控方式。

直流回路的平均电流为:

IdUd0.45U21cosRR2 (2-2)

回路中的电流有效值为:

2II1TIR22U2sinRdt21

UR4sin22 (2-3)

由式2. 2、式2. 3可得流过晶闸管的电流波形系数: KIsin24()

f2Id2(1cos) (2-4)

路及波形

电源供给的有功功率为:

2PIRRUI (2-5)

其中U为R上的电压有效值:

U122U2sintdtU221sin242

电源侧的输入功率为:

SS2U2I

功率因素为: 当α=0时

coscosPI2RSU21sin242 (2-6)

22,α越大,cosα越低,α=π。可见,尽管是电阻负载,电源的功

率因素也不为1。这是单相半波电路的缺陷。

例2-1 单相半波可控整流电路,电阻负载,由220V交流电源直接供电。负载要求的最高平均电压为60V,相应平均电流为20A,试选择晶闸管元件,并计算在最大输出情况下的功率因数。

解:(1)先求出最大输出时的控制角α,根据式(2-1)可得:

cos2Ud260110.2120.45U20.45220

 77.8

(2)求回路中的电流有效值,根据式(2-4)可得:

KfI22.06IdITI22.062041.2A

(3)求晶闸管两端承受的正、反向峰值电压Um:

Um2U2311V

(4)选择晶闸管:

晶闸管通态平均电流,可按下式计算与选择:

IT(AV)(1.5~2)取IT(AV)50AIT39.4~52.5A1.57

晶闸管电压定额可按下式计算与选择:

UTE(2~3)Um622~933V

0取 UTN100V

可选用KP50-10型晶闸管。

(5)由式(2-6)计算最大输出情况下功率因数:

cosPI2R0.562SU2b 带阻感负载的工作情况:

阻感负载的特点:电感对电流变化有抗拒作用,使得流过电感的电流不能发生突变。 电力电子电路的一种基本分析方法。

通过器件的理想化,将电路简化为分段线性电路,分段进行分析计算。

对单相半波电路的分析可基于上述方法进行:当VT处于断态时,相当于电路在VT处断开,id=0。当VT处于通态时,相当于VT短路。

图2-2 带阻感负载的单相半波电路及其波形

为避免Ud太小,在整流电路的负载两端并联续流二极管与没有续流二极管时的情况比较,在u2正半周时两者工作情况一样。

当u2过零变负时,VDR导通,ud为零。此时为负的u2通过VDR向VT施加反压使其关断,L储存的能量保证了电流id在L-R-VDR回路中流通,此过程通常称为续流。续流期间ud为0,ud中不再出现负的部分。

图2-3 单相半波可控整流电路的分段线性等效电路

a) VT处于关断状态 b) VT处于导通状态

数量关系若近似认为id为一条水平线,恒为Id,则有:

(2-5)

( 2-7 )

( 2-8)

(2-6)

单相半波可控整流电路的特点简单,但输出脉动大,变压器二次侧电流中含直流分量,造成变压器铁芯直流磁化实际上很少应用此种电路。

分析该电路的主要目的在于利用其简单易学的特点,建立起整流电路的基本概念。

(2) 单相桥式全控整流电路

单相整流电路中应用较多的a 带电阻负载的工作情况工作原理及波形分析见图2-5: VT1和VT4组成一对桥臂,在u2正半周承受电压u2,得到触发脉冲即导通,当u2过零时关断;

VT2和VT3组成另一对桥臂,在u2正半周承受电压-u2,得到触发脉冲即导通,当u2

过零时关断。 数量关系:

a 角的移相范围为180°。

(2-9)

图2-4 单相半波带阻感负载有续流二极管的电路及波形

图2-5 单相全控桥式带电阻负载时的电路及波形

(2-10)

(2-11)

(2-12)

(2-13)

(2-14)

不考虑变压器的损耗时,要求变压器的容量为S=U2I2 。 b 带阻感负载的工作情况

为便于讨论,假设电路已工作于稳态,id的平均值不变。

假设负载电感很大,负载电流id连续且波形近似为一水平线u2过零变负时,由于电感的作用晶闸管VT1和VT4中仍流过电流id,并不关断。

至ωt=π+ a时刻,给VT2和VT3加触发脉冲,因VT2和VT3本已承受正电压,故两管导通。

VT2和VT3导通后,u2通过VT2和VT3分别向VT1和VT4施加反压使VT1和VT4关断,流过VT1和VT4的电流迅速转移到VT2和VT3上,此过程称换相,亦称换流。

(2-15)

晶闸管移相范围为90°。

晶闸管承受的最大正反向电压均为2U2。

晶闸管导通角θ与a无关,均为180°。

变压器二次侧电流i2的波形为正负各180°的矩形波,其相位由a角决定,有效值I2=Id。

图2-6 单相全控桥带阻感负载时的电路及波形

c 带反电动势负载时的工作情况

在|u2|>E时,才有晶闸管承受正电压,有导通的可能,导通之后,ud=u2, ,直至|u2|=E,id即降至0使得晶闸管关断,此后ud=E与电阻负载时相比,晶闸管提前了电角度δ停止导电,δ称为停止导电角。

(2-16)

图2-7 单相桥式全控整流电路接反电动势—电阻负载时的电路及波形

在a 角相同时,整流输出电压比电阻负载时大。如图2-7b所示id波形在一周期内有部分时间为0的情况,称为电流断续。与此对应,若id波形不出现为0的点的情况,称为电流连续。当触发脉冲到来时,晶闸管承受负电压,不可能导通。为了使晶闸管可靠导通,要求触发脉冲有足够的宽度,保证当wt=δ时刻有晶闸管开始承受正电压时,触发脉冲仍然存在。这样,相当于触发角被推迟为δ。

负载为直流电动机时,如果出现电流断续则电动机的机械特性将很软。

为了克服此缺点,一般在主电路中直流输出侧串联一个平波电抗器,用来减少电流的脉动和延长晶闸管导通的时间。

这时整流电压ud的波形和负载电流id的波形与电感负载电流连续时的波形相同,ud的计算公式亦一样。

为保证电流连续所需的电感量L可由下式求出:

(2-17)

图2-8 单相桥式全控整流电路带反电动势负载串平波电抗器,电流连续的临界情况

(3)单相全波可控整流电路

图2-9 单相全波可控整流电路及波形

单相全波与单相全控桥从直流输出端或从交流输入端看均是基本一致的。 两者的区别:

(1)单相全波中变压器结构较复杂,绕组及铁芯对铜、铁等材料的消耗多; (2)单相全波只用2个晶闸管,比单相全控桥少2个,相应地,门极驱动电路也少2个;但是晶闸管承受的最大电压为 ,是单相全控桥的2倍;

(3)单相全波导电回路只含1个晶闸管,比单相桥少1个,因而管压降也少1个 从上述(2)、(3)考虑,单相全波电路有利于在低输出电压的场合应用。 (4)单相桥式半控整流电路

图2-10 单相桥式半控整流电路,有续流二极管

单相全控桥中,每个导电回路中有2个晶闸管,为了对每个导电回路进行控制,只需1个晶闸管就可以了,另1个晶闸管可以用二极管代替,从而简化整个电路。如此即成为单相桥式半控整流电路(先不考虑VDR)。

半控电路与全控电路在电阻负载时的工作情况相同,单相半控桥带阻感负载的情况, 假设负载中电感很大,且电路已工作于稳态。

在u2正半周,触发角a处给晶闸管VT1加触发脉冲,u2经VT1和VD4向负载供电u2

过零变负时,因电感作用使电流连续,VT1继续导通。但因a点电位低于b点电位,使得电流从VD4转移至VD2,VD4关断,电流不再流经变压器二次绕组,而是由VT1和VD2续流在u2负半周触发角a时刻触发VT3,VT3导通,则向VT1加反压使之关断,u2经VT3和VD2向负载供电。u2过零变正时,VD4导通,VD2关断。VT3和VD4续流,ud又为零续流二极管的作用。

若无续流二极管,则当a突然增大至180°或触发脉冲丢失时,会发生一个晶闸管持续导通而两个二极管轮流导通的情况,这使ud成为正弦半波,即半周期ud为正弦,另外半周期ud为零,其平均值保持恒定,称为失控。

有续流二极管VDR时,续流过程由VDR完成,晶闸管关断,避免了某一个晶闸管持续导通从而导致失控的现象。同时,续流期间导电回路中只有一个管压降,有利于降低损耗 单相桥式半控整流电路的另一种接法相当于把图2-4a中的VT3和VT4换为二极管VD3和VD4,这样可以省去续流二极管VDR,续流由VD3和VD4来实现。

图2-11 单相桥式半控整流电路的另一接法

2 三相可控整流电路

主要内容:三相半波整流电路的波形分析及计算。三相全控桥的工作原理、波形分析及计算。

重点:三相全控桥的工作原理、波形分析及计算。

难点:三相半波整流电路的波形分析及计算。三相全控桥的工作原理、波形分析及计算。

基本要求:掌握三相半波、三相全控整流电路在不同性质负载下的工作原理及波形分析,控制角移相范围,电流有效值、平均值的计算,对相位控制触发脉冲的基本要求。理解以带平衡电抗器的双反星性电路为代表的大功率整流电路工作原理。

负载容量较大,或要求直流电压脉动较小、易滤波时基本的是三相半波可控整流电路,三相桥式全控整流电路应用最广。

(1)三相半波可控整流电路 a 电阻负载 电路的特点:

变压器二次侧接成星形得到零线,而一次侧接成三角形避免3次谐波流入电网三个晶闸管分别接a、b、c三相电源,其阴极连接在一起——共阴极接a =0°时的工作原理分析假设将电路中的晶闸管换作二极管,成为三相半波不可控整流电路。此时,相电压最大的一个所对应的二极管导通,并使另两相的二极管承受反压关断,输出整流电压即为该相的相电压一周期中,在t1~wt2期间,VD1导通,ud=ua在wt2~wt3期间, VD2导通,ud=ub在wt3~ wt4期间,VD3导通,ud=uc二极管换相时刻为自然换相点,是各相晶闸管能触发导通的最早时刻,将其作为计算各晶闸管

图2-12 三相半波可控整流电路共阴极接法电阻负载

时的电路及a =0°时的波形

触发角a的起点,即a =0°变压器二次侧a相绕组和晶闸管VT1

的电流波形,变压器二次绕组电流有直流分量晶闸管的电压波形,由3段组成:

图2-13 三相半波可控整流电路,电阻负载,a =30°时的波形

流连续,有

图2-14 三相半波可控整流电路,电阻负载,a =60°时的波形

第1段,VT1导通期间,为一管压降,可近似为uT1=0第2段,在VT1关断后,VT2导通期间,uT1=ua-ub=uab,为一段线电压第3段,在VT3导通期间,uT1=ua-uc=uac为另一段线电压增大a值,将脉冲后移,整流电路的工作情况相应地发生变化 a=30°时的波形负载电流处于连续和断续之间的临界状态 a>30°的情况。

特点:负载电流断续,晶闸管导通角小于120°电阻负载时a角的移相范围为150°整流电压平均值的

计算

(1)a≤30°时,负载电

当a=0时,Ud最大,为

。(2-18)

(2)a>30°时,负载电流断续,晶闸管导通角减小,此时有:

322Ucos(2[16)]0.675[1cos(6)](2-19)

Ud/U2随a变化的规律如图2-15中的曲线1所示。 负载电流平均值为:

(2-20)

晶闸管承受的最大反向电压,由图2-13e不难看出为变压器二次线电压峰值,即: (2-21)

由于晶闸管阴极与零点间的电压即为整流输出电压ud,其最小值为零,而晶闸管阳极与零点间的最高电压等于变压器二次相电压的峰值,因此晶闸管阳极与阴极间的最大电

图2-15 三相半波可控整流电路Ud/U2与a 的关系

压等于

变压器二次相电压的峰值,即(2-22)

b 阻感负载

特点:阻感负载,L值很大,id波形基本平直:

a≤30°时:整流电压波形与电阻负载时相同;

a >30°时(如a=60°时的波形如图2-16所示)u2过零时,VT1不关断,直到VT2的脉冲到来,才换流,由VT2导通向负载供电,同时向VT1施加反压使其关断——ud波形中出现负的部分阻感负载时的移相范围为90°。 数量关系:

Ud/U2与a成余弦关系,如图2-15中的曲线2所示。如果负载中的电感量不是很大,则当a>30°后,ud中负的部分减少,

Ud略为增加,Ud/U2与a的关系将介于曲线1和2之间。变压器二次电流即晶闸管电流的有效值为

图2-16 三相半波可控整流电路,阻感负载时的电路及a =60°时的波形

(2-23)

晶闸管的额定电流为

(2-24)

晶闸管最大正反向电压峰值均为变压器二次线电压峰值

(2-25)

图2-16中id波形有一定的脉动,但为简化分析及定量计算,可将id近似为一条水平线。 三相半波的主要缺点在于其变压器二次电流中含有直流分量,为此其应用较少。

(2)三相桥式全控整流电路

应用最为广泛,共阴极组——阴极连接在一起的3个晶闸管(VT1,VT3,VT5)共阳极组——阳极连接在一起的3个晶闸管(VT4,VT6,VT2) 编号:1、3、5,4、6、2

a 带电阻负载时的工作情况 a =0°时的情况

假设将电路中的晶闸管换作二极管进行分析对于共阴极阻的3个晶闸管,阳极所接交流电压值最大的一个导通对于共阳极组的3个晶闸管,阴极所接交流电压值最低(或者说负得最多)的导通

图2-17 三相桥式全控整流电路原理图

任意时刻共阳极组和共阴极组中各有1个晶闸管处于导通状态

从相电压波形看,共阴极组晶闸管导通时,ud1为相电压的正包络线,共阳极组导通时,ud2为相电压的负包络线,ud=ud1 - ud2是两者的差值,为线电压在正半周的包络线直接从线电压波形看, ud为线电压中最大的一个,因此ud波形为线电压的包络线。 三相桥式全控整流电路的特点:

(1)2管同时通形成供电回路,其阴极组和共阳极组各1,且不能为同1相器件。 (2)对触发脉冲的要求:

按VT1-VT2-VT3-VT4-VT5-VT6的顺序,相位依次差60°。

共阴极组VT1、VT3、VT5的脉冲依次差120°,共阳极组VT4、VT6、VT2也依次差120°同一相的上下两个桥臂,即VT1与VT4,VT3与VT6,VT5与VT2,脉冲相差180°。

表2-1 三相桥式全控整流电路电阻负载a=0°时晶闸管工作情况

时 段

共阴极组中导通的晶闸管 共阳极组中导通的晶闸管 整流输出电压Ud

I VT1 VT6

II VT1 VT2

III VT3 VT2

IV VT3 VT4

V VT5 VT4

VI VT5 VT6

Ua-Ub=Uab Ua-Uc=Uac Ub-Uc=Ubc Ub-Ua=Uba Uc-Ua=Uca Uc-Ub=Ucb

(3)ud一周期脉动6次,每次脉动的波形都一样,故该电路为6脉波整流电路。

图2-18 三相桥式全控整流电路带电阻负载a =0°时的波形

(4)需保证同时导通的2个晶闸管均有脉冲可采用两种方法:一种是宽脉冲触发另一种方法是双脉冲触发(常用)。

(5)晶闸管承受的电压波形与三相半波时相同,晶闸管承受最大正、反向电压的关系也相同 a=30°时的工作情况从wt1开始把一周期等分为6段,ud波形仍由6段线电压构成,每一段导通晶闸管的编号等仍符合表2-1的规律区别在于:晶闸管起始导通时刻推迟了30°,组成ud的每一段线电压因此推迟30°变压器二次侧电流ia波形的特点:在VT1处于通态的

120°期间,ia为正,ia波形的形状与同时段的ud波形相同,在VT4处于通态的120°期间,ia波形的形状也与同时段的ud波形相同,但为负值。a=60°时工作情况ud波形中每段线电压的波形继续后移,ud平均值继续降低。a=60°时ud出现为零的点。

图2-19 三相桥式全控整流电路带电阻负载a =30°时的波形

小结

当a≤60°时,ud波形均连续,对于电阻负载,id波形与ud波形形状一样,也连续 当a>60°时,ud波形每60°中有一段为零,ud波形不能出现负值。带电阻负载时三相桥式全控整流电路a 角的移相范围是120°

b 阻感负载时的工作情况

a≤60°时,ud波形连续,工作情况与带电阻负载时十分相似,各晶闸管的通断情况、输出整流电压ud波形、晶闸管承受的电压波形等都一样区别在于:由于负载不同,同样的整流输出电压加到负载上,得到的负载电流id波形不同。阻感负载时,由于电感的作用,使得负载电流波形变得平直,当电感足够大的时候,负载电流的波形可近似为一条水平线。 a >60°时阻感负载时的工作情况与电阻负载时不同,电阻负载时ud波形不会出现负的部分,而阻感负载时,由于电感L的作用,ud波形会出现负的部分带阻感负载时,三相桥式全控整流电路的a 角移相范围为90°。

图2-21 三相桥式全控整流电路带电阻负载a =90°时的波形

c定量分析

当整流输出电压连续时(即带阻感负载时,或带电阻负载a≤60°时)的平均值为:

带电阻负载且a >60°时,整流电压平均值为:

输出电流平均值为 Id=Ud /R

(2-27)

(2-26) 当整流变压器为图2-17中所示采用星形接法,带阻感负载时,变压器二次侧电流波形如图2-23中所示,为正负半周各宽120°、前沿相差180°的矩形波,其有效值为:

(2-28)

图2-22三相桥式整流电路带阻感负载,a =30°时的波形

晶闸管电压、电流等的定量分析与三相半波时一致。

三相桥式全控整流电路接反电势阻感负载时,在负载电感足够大足以使负载电流连续的情况下,电路工作情况与电感性负载时相似,电路中各处电压、电流波形均相同,仅在计算Id时有所不同,接反电势阻感负载时的Id为:

(2-29)

式中R和E分别为负载中的电阻值和反电动势的值。

图2-23 三相桥式全控整流电路带阻感负载a =90°时的波形

3 变压器漏感对整流电路的影响

主要内容:变压器漏抗对整流电路的影响。电路中谐波的产生、组成及抑制方法。整流电路的谐波和功率因数。

重点:变压器漏抗对整流电路的影响。电路中谐波的产生、组成及抑制方法。 难点: 无。

基本要求:掌握变压器漏抗对整流电路的影响。

图2-24考虑变压器漏感时的三相半波可控整流电路及波形

考虑包括变压器漏感在内的交流侧电感的影响,该漏感可用一个集中的电感LB表示以三相半波为例,然后将结论推广 VT1换相至VT2的过程:

因a、b两相均有漏感,故ia、ib均不能突变,于是VT1和VT2同时导通,相当于将a、b两相短路,在两相组成的回路中产生环流ik。ik=ib是逐渐增大的,而ia=Id-ik是逐渐减小的。当ik增大到等于Id时,ia=0,VT1关断,换流过程结束。 换相重叠角——换相过程持续的时间,用电角度γ表示:

换相过程中,整流电压ud为同时导通的两个晶闸管所对应的两个相电压的平均值:

(2-30) 2-31)

换相压降——与不考虑变压器漏感时相比,ud平均值降低的多少:

(2-31)

换相重叠角γ的计算:

(2-32)2-31)

(2-33)2-31)

由上式得:

进而得出:

当wt=a+γ时,ik=Id,于是

(2-34)2-31)

(2-35)

γ 随其它参数变化的规律: 2-31)

(1) Id越大则γ 越大; (2) XB越大γ越大;

(3) 当a≤90°时,α越小γ 越大。

表2-2 各种整流电路换相压降和换相重叠角的计算 电路形式 单相全波 单相全控桥 三相半波三相 全控桥 ② m脉波整流电路 ② 变压器漏抗对各种整流电路的影响。

注: ①单相全控桥电路中,XB在一周期的两次换相中都起作用,等效为m=4; ②三相桥等效为相电压等于 的6脉波整流电路,故其m=6,相电压按代入变压器漏感对整流电路影响的一些结论。

(1) 出现换相重叠角γ,整流输出电压平均值Ud降低。

(2) 整流电路的工作状态增多

(3) 晶闸管的di/dt减小,有利于晶闸管的安全开通。有时人为串入进线电抗器以抑制晶闸管的di/dt。

(4) 换相时晶闸管电压出现缺口,产生正的du/dt,可能使晶闸管误导通,为此必须加吸收电路。

(5) 换相使电网电压出现缺口,成为干扰源。

因篇幅问题不能全部显示,请点此查看更多更全内容