第二章
2-1 试求图2-T-1所示RC网络的传递函数。
1CsR1,zR,则传递函数为: (a)z1221RCs11R1CsR1(b) 设流过C1、C2的电流分别为I1、I2,根据电路图列出电压方程: 并且有
联立三式可消去I1(s)与I2(s),则传递函数为:
2-2 假设图2-T-2的运算放大器均为理想放大器,试写出以ui为输入,uo为输出的传递函数。
(a)由运算放大器虚短、虚断特性可知:对上式进行拉氏变换得到 故传递函数为
(b)由运放虚短、虚断特性有:C联立两式消去uc得到 对该式进行拉氏变换得 故此传递函数为 (c)Cducucu0uuuc0,且ic,联立两式可消去uc得到 dtR1/2R1/2RR12uiduduCiC0,ucuiu0, Rdtdtducuiucucuu0,c00, dtR2R2R2R1对该式进行拉氏变换得到 故此传递函数为
2-3 试求图2-T-3中以电枢电压ua为输入量,以电动机的转角为输出量的微
分方程式和传递函数。 解:设激磁磁通Kfif恒定
2-4 一位置随动系统的原理图如图2-T-4所示。电动机通过传动链带动负载及电位器的滑动触点一起移动,用电位器检测负载运动的位移,图中以c表示电位器滑动触点的位置。另一电位器用来给定负载运动的位移,此电位器的滑动触点的位置(图中以r表示)即为该随动系统的参考输入。两电位器滑动触点间的电压差ue即是无惯性放大器(放大系数为Ka)的输入,放大器向直流电动机M供电,电枢电压为u,电流为I。电动机的角位移为。 解:
CsRsKACm
60iLaJs3iLafRaJs2iRafCeCmsKACm22-5 图2-T-5所示电路中,二极管是一个非线性元件,其电流id与ud间的关系
d0.u02631R10,静态工作点u02.39V,为id10e。假设电路中的6i02.19103A。试求在工作点(u0,i0)附近idf(ud)的线性化方程。
解:id2.191030.084ud0.2
2-6 试写出图2-T-6所示系统的微分方程,并根据力—电压的相似量画出相似电路。
解:分别对物块m1、m2受力分析可列出如下方程: 代入v1dy1dy、v22得 dtdt2-7 图2-T-7为插了一个温度计的槽。槽内温度为i,温度计显示温度为。试求传递函数
(s)(考虑温度计有贮存热的热容C和热流的热阻R)。 i(s)解:根据能量守恒定律可列出如下方程:
对上式进行拉氏变换得到 则传递函数为
2-8 试简化图2-T-8所示的系统框图,并求系统的传递函数
R(s) + H1 G1 G1 + C(s)。 R(s)G2 + _ + G3 _ G2 H1 H2 + + + a) C(s) C(sG3 GH3 3 _ C(s+ b) H1 G+H11 图+ C(sG1 G4 C(sG3 + + C(s) R(s化简过程如下+ 解:(a) + _
传递函数为 (b) 化简过程如下
H1
R(sR(s_ G2 G1 G1+G2 G1+G2 R(sG2 G2 H2 1/H3+H2/G_ R(s+ R(s+ G1 _ _ R(s) G4 + 3 2G3 GG4+G+ C(sC(s) C(s传递函数为 H3 C(s)2-9 试简化图2-T-9所示系统的框图,并求系统的传递函数。 R(s)
R(s+ 解:化简过程如下 _
R(s+ _ C(s+ _ 0.0.+ + _ 0._ + + 0.KK图C(s0.R(sC(s0.
R(s系统的传递函数为 C(s2-10 绘出图2-T-10所示系统的信号流程图,并根据梅逊公式求出传递函数
C(s)。 R(s)
H2 C(sR(s+ + 系统的传递函数为 G1 + G2 G3 + _ + C(s)C(s)2-11 试绘出图2-T-11所示系统的信号流程图,并求传递函数1和2(设H1 R1(s)R2(s)R2(s)0)。 G4 图C1(s
R1(s+ _ G2 解:系统信号流程图如图所示。G G3 1 + 题2-11 系统信号流程图 H1 H2 + + 2-12 求图R2-T-12。 2(s+ 所示系统的传递函数R(sG)5 G4 _ C(s)G6 C2(s解:(a) 系统只有一个回环:L1cdh,
图2-T-11
在节点R(s)和C(s)之间有四条前向通道,分别为:P1abcdef,P2abcdi,
P4agdi,相应的,有:12341 3agdef,P则
(b) 系统共有三个回环,因此,L1111, R1C1sR2C2sR1C2s两个互不接触的回环只有一组,因此,L2111 2R1C1sR2C2sR1R2C1C2s11111,并且sC1R1sC2R1C1C2s2在节点R(s)和C(s)之间仅有一条前向通道:P11有11,则
2-13 确定图2-T-13中系统的输出C(s)。
D1(sD2(sC1(s)_ G1G2+ R(s) R(+ s)作用时,解:采用叠加原理,当仅有, + C(s) + 1GHGGH+ R(s)G1 22G2 121_ _ 当仅有D1(s)作用时,当仅有D2(s)作用时,C2(s)G2, D1(s)1G2H2G1G2H1H2 H1 + C3(s)G2+ , 3(sD2(s)1G2H2G1DGH21C(s)G1G2H1当仅有D3(s)作用时,4
D3(s)1G2H2G1G2H1图
根据叠加原理得出
第三章
3-1 设系统的传递函数为
求此系统的单位斜坡响应和稳态误差。 解:当输入为单位斜坡响应时,有
r(t)t,R(s)1 2s所以有
分三种情况讨论 (1)当1时, (2)当01时, (3)当1时, 设系统为单位反馈系统,有 系统对单位斜坡输入的稳态误差为
3-2 试求下列单位反馈控制系统的位置、速度、加速度误差系数。系统的开环传递函数为
(1)G(s)50K (2)G(s)
(10.1s)(12s)s(10.1s)(10.5s)K(12s)(14s)KG(s) (4)
s2(s22s10)s(s24s200)s0s0(3)G(s)解:(1)KplimG(s)50,KvlimsG(s)0,Kalims2G(s)0;
s0(2)KplimG(s),KvlimsG(s)K,Kalims2G(s)0;
s0s0s0(3)KplimG(s),KvlimsG(s),Kalims2G(s)s0s0s0K; 10(4)KplimG(s),KvlimsG(s)s0s0K,Kalims2G(s)0
s02003-3 设单位反馈系统的开环传递函数为
若输入信号如下,求系统的给定稳态误差级数。
(1)r(t)R0,(2)r(t)R0R1t,(3)r(t)R0R1tR2t2 解:首先求系统的给定误差传递函数 误差系数可求得如下
s(t)r (1)r(t)R0,此时有rs(t)R0,rs(t)0,于是稳态误差级数为
esrtC0rs(t)0,t0
12s(t)R1,r (2)r(t)R0R1t,此时有rs(t)R0R1t,r于是稳态误差s(t)0,
级数为
s(t)0.1R1,t0 esrtC0rs(t)C1rs(t)R1R2t, (3)r(t)R0R1tR2t2,此时有rs(t)R0R1tR2t2,rrs(t)R2,于是稳态误差级数为
1212s(t)esrtC0rs(t)C1rC2r(t)0.1(R1R2t),t0 s2!3-4 设单位反馈系统的开环传递函数为
若输入为r(t)sin5t,求此系统的给定稳态误差级数。 解:首先求系统的给定误差传递函数 误差系数可求得如下 以及
则稳态误差级数为
3-6 系统的框图如图3-T-1a所示,试计算在单位斜坡输入下的稳态误差的终值。如在输入端加入一比例微分环节(参见图3-T-1b),试证明当适当选取a值后,系统跟踪斜坡输入的稳态误差可以消除。
R(sR(sC(s) _ + C(s+ 2解:系统在单位斜坡输入下的稳态误差为:,加入比例—微分环节后 _ a) esrn可见取a2n,可使esr0
b) 图3-T-1
3-7 单位反馈二阶系统,已知其开环传递函数为
从实验方法求得其零初始状态下的阶跃响应如图3-T-2所示。经测量知,
Mp0.096,tp0.2s。试确定传递函数中的参量及n。
解:由图可以判断出01,因此有 代入Mp0.096,tp0.2可求出
0.598 19.588nR(s+ _ G(s图3-T-3
C(s3-8 反馈控制系统的框图如图3-T-3所示,要求 (1)由单位阶跃函数输入引起的系统稳态误差为零。 (2)整个系统的特征方程为s34s26s40 求三阶开环传递函数G(s),使得同时满足上述要求。 解:设开环传递函数为
s3k1s2k2sk31根据条件(1)esrlim30可知:k30;
s01G(s)sk1s2k2sk3K根据条件(2)D(s)s34s26s40可知:k14,k26,K4。 所以有
3-9 一单位反馈控制的三阶系统,其开环传递函数为G(s),如要求 (1)由单位斜坡函数输入引起的稳态误差等于2.0。 (2)三阶系统的一对主导极点为s1,s21j1。 求同时满足上述条件的系统开环传递函数G(s)。 解:按照条件(2)可写出系统的特征方程
将上式与1G(s)0比较,可得系统的开环传递函数 根据条件(1),可得
解得a1,于是由系统的开环传递函数为 3-10 已知单位反馈控制系统的开环传递函数为
试求在下列条件下系统单位阶跃响应之超调量和调整时间。 (1)K4.5,1s (2)K1,1s (3)K0.16,1s 解:系统单位阶跃响应的象函数为
(1)将K4.5,1s代入式中可求出n2.12rad/s,0.24,为欠阻尼系
统,因此得出
Mp46%,ts7.86s(2%),5.90s(5%)
(2)将K1,1s代入式中可求出n1rad/s,0.5,,为欠阻尼系统,因此得出
Mp16.3%,ts8s(2%)s,6s(5%)
(3)将K0.16,1s代入式中可求出n0.4rad/s,1.25,过阻尼,无最大超调量。因此只有ts15s。
3-11 系统的框图如图3-T-4所示,试求当a=0时,系统的之值。如要求,是确定a的值。
(1)当a=0时, 则系统传传递函数为G(s)2n2,所以有0.354。
8,其中n822,
s22s8 (2)n不变时,系统传函数为G(s)8,要求0.7,则有
s2(8a2)s82n2(4a1),所以可求得求得a0.25。
3-12 已知两个系统的传递函数,如果两者的参量均相等,试分析z=1的零点对系统单位脉冲响应和单位阶跃响应的影响。 1. 单位脉冲响应 (a) 无零点时 (b)有零点z1时
比较上述两种情况,可见有零点z1时,单位脉冲响应的振幅较无零点时小,
12n而且产生相移,相移角为arctg。
1n2.单位阶跃响应
(a) 无零点时 (b)有零点z1时
加了z1的零点之后,超调量Mp和超调时间tp都小于没有零点的情况。 3-13 单位反馈控制系统的框图如图3-T-5所示。假设未加入外作用信号时,系统处于零初始状态。如果不考虑扰动,当参考输入为阶跃函数形式的速度信号时,试解释其响应为何必然存在超调现象?
单位反馈控制系统的框图如图3-T-5所示。假设未加入外作用信号时,系统中存在比例-积分环节
K11s1,当误差信号et0时,由于积分作用,该环节s的输出保持不变,故系统输出继续增长,知道出现et0时,比例-积分环节的输出才出现减小的趋势。因此,系统的响应必然存在超调现象。
3-14 上述系统,如在rt为常量时,加于系统的扰动nt为阶跃函数形式,是从环节及物理作用上解释,为何系统的扰动稳态误差等于零?如扰动nt为斜坡函数形式,为何扰动稳态误差是与时间无关的常量?
在rt为常量的情况下,考虑扰动nt对系统的影响,可将框图重画如下
图A-3-2 题3-14系统框图等效变换
根据终值定理,可求得nt为单位阶跃函数时,系统的稳态误差为0,nt为单位斜坡函数时,系统的稳态误差为
1。 K1从系统的物理作用上看,因为在反馈回路中有一个积分环节,所以系统对阶跃函数的扰动稳态误差为零。在反馈回路中的积分环节,当输出为常量时,可以在反馈端产生一个与时间成正比的信号以和扰动信号平衡,就使斜坡函数的扰动输入时,系统扰动稳态误差与时间无关。
3-15 已知系统的特征方程如下,试用劳斯判据检验其稳定性。
s4s3(1)劳斯表有 s2s1s012633834030 则系统系统稳定。 0112240 劳斯阵列第一列符号改变两次,根据劳1282s4s3(2)劳斯表有 s2s1s0斯判据,系统有两个极点具有正实部,系统不稳定。
s5s4s3(3)劳斯表有 2ss1s01316191066 劳斯阵列第一列符号改变两次,根据劳
10101210斯判据,系统系统有两个极点具有正实部,系统不稳定。
s6s5s413234345984(4)劳斯表有 s3812 系统处于稳定的临界状态,由辅助方程
s2s1s0As2s46s24可求得系统的两对共轭虚数极点s1,2j;s3,4j2。
3-16 根据下列单位反馈系统的开环传递函数,确定使系统稳定的K值的范围。 (1)K>0时,系统稳定。 (2)K>0时,系统不稳定。 (3)0 s(s1)(2s1)横坐标,为纵坐标的平面上,确定系统为稳定的区域。 系统的特征方程为 D(s)2s3(2)s2(K1)sK0 s3s2s122(2)(k1)2k2kk1k列写劳斯表 ,得出系统稳定应满足的条件 s0(2)(K1)2K0 2由此得到和应满足的不等式和条件 2 6 3 4 4 3.3 5 3 9 2.5 15 2.28 30 2.13 100 2.04 根据列表数据可绘制K为横坐标、为纵坐标的曲线,闭环系统稳定的参数区域为图A-3-3中的阴影部分。 图A-3-3 闭环系统稳定的参数区域 3-18 已知单位反馈控制系统的开环传递函数为G(s)系统的临界增益Kc之值及无阻尼振荡频率值。 根据单位反馈系统的开环传递函数得到特征方程 列写劳斯表 根据劳斯判据可得 系统稳定的K值范围为 当K11.22106、K21.7535108时,系统有一对共轭虚数极点,此时产生等幅振荡,因此临界增益Kc1.22106以及Kc1.7535108。 K(s5)(s40) 试求3s(s200)(s1000)根据劳斯表列写Kc1.22106时的辅助方程 解得系统的一对共轭虚数极点为s1,2j16,系统的无阻尼振荡频率即为 16rad/s。 Kc1.7535108时的辅助方程 解得系统的一对共轭虚数极点为s3,4j338,系统的无阻尼振荡频率为 338rad/s。 第四章 4-2设已知单位反馈系统的开环传递函数如下,要求绘出当开环增益K1变化时系统的根轨迹图,并加简要说明。 (1)GsK1 ss1s30与,3上有根轨迹, 系统开环极点为0,—1,—3,无开环零点。实轴1,渐近线相角a60,180,渐近线与实轴交点a1.33,由 dK10可得出分离dS(0.45,j0)点为,与虚轴交点j3K112。常规根轨迹如图A-4-2所示。 图A-4-2 题4-2系统(1)常规根轨迹 (2)GsK1 ss4s24s200上有根轨迹,a45,135,a2,分离 方法步骤同上,实轴4,点2,j0与2j2.5,与虚轴交点j10K1260。常规根轨迹如图A-4-3所示。 图A-4-3 题4-2系统(2)常规根轨迹 4-3设单位反馈系统的开环传递函数为G(s)K1(1)试绘制系统根轨迹的大s2(s1)致图形,并对系统的稳定性进行分析。(2)若增加一个零点z1,试问根轨迹 图有何变化,对系统稳定性有何影响? (1)GsK1 s2s2dK10可得出分离点为dS2上有根轨迹,a60,a0.67,由实轴,0,j0,与虚轴交点为j0K10常规根轨迹如图 A-4-4(a)所示。从根轨迹图 可见,当K10便有二个闭环极点位于右半s平面。所以无论K取何值,系统都不稳定。 图A-4-4 题4-3系统常规根轨迹 (2)GsK1s1 s2s21上有根轨迹,a90,a0.5,分离点为0,j0;常规根轨迹实轴2,如图A-4-4(b)所示。从根轨迹图看,加了零点z1后,无论K取何值,系统都是稳定的。 4-4 设系统的开环传递函数为G(s)H(s)K1(s2)试绘制下列条件下系统的2s(s2sa)常规根轨迹(1)a=1 (2) a=1.185 (3) a=3 0上有根轨迹,a90,a0,分离点为0.38,0, (1)a=1时,实轴2,常规根轨迹如图图A-4-5(1) 图A-4-5(1) 0上有根轨迹,a90,a0,根轨迹与虚轴的(2)a=1.185时,实轴2,j,常规根轨迹如图图A-4-5(2) 交点为0, 图A-4-5(2) 0上有根轨迹,a90,a0,根轨迹与虚轴的交点(3)a=3时,实轴2,j,常规根轨迹如图图A-4-5(3) 为0, 图A-4-5(3) 4-5 求开环传递函数为G(s)H(s)a=10(2)a=9(3)a=8 (4)a=3 1上有根轨迹,a90,a4.5,分离点为0,j0,与虚轴交(1)实轴10,K1(s1)的系统在下列条件下的根轨迹(1)2s(sa)点为j0K10。常规根轨迹大致图形如图A-4-6(1) 图A-4-6(1) 1上有根轨迹,a90,a4,分离点为0,j0,与虚轴交点(2)实轴9,为j0K10。常规根轨迹大致图形如图A-4-6(2) 图A-4-6(2) 1上有根轨迹,a90,a3.5,分离点为0,j0,与虚轴交(3)实轴8,点为j0K10。常规根轨迹大致图形如图A-4-6(3) 图A-4-6(3) 1上有根轨迹,a90,a1,分离点为0,j0,与虚轴交点(4)实轴3,为j0K10。常规根轨迹大致图形如图A-4-6(4) 图A-4-6(4) 4-7 设系统的框图如图4-T-2所示,试绘制以a为变量的根轨迹,并要求:(1) 求无局部反 馈时系统单位斜坡响应的稳态误差,阻尼比及调整时间。(2)讨论a=2时局部 反馈对系性 能的影响。(3)确定临界阻尼时的a值。 系统特征方程为 以为可变参数,可将特征方程改写为 从而得到等效开环传递函数 0上有根轨迹 根据绘制常规根轨迹的方法,可求得实轴,分离点为1,j0,出射角为P150。参数根轨迹如图A-4-7a180,a1,所示。 图A-4-7 题4-7系统参数根轨迹 (1) 无局部反馈时0,单位速度输入信号作用下的稳态误差为esr1;阻 尼比为0.5;调节时间为ts6s5% (2) 0.2时,esr1.2,0.6,ts5s(5%) 比较可见,当加入局部反馈之后,阻尼比变大,调节时间减小,但稳态误差加大。 (3) 当1时,系统处于临界阻尼状态,此时系统有二重闭环极点s1,21。 4-8 根据下列正反馈回路的开环传递函数,绘制其根轨迹的大致图形。 0,21,有根轨迹,a90,a1.5,分离点为1.5,(1)实轴,与虚轴交点为j0K13。常规根轨迹大致图形如图A-4-8(1) 2,1有根轨迹,a0,0,(2)实轴0,120,a2,分离点为1.57,与虚轴交点为j0K13。常规根轨迹大致图形如图A-4-8(2) 2,14,3有根轨迹,a0,(3)实轴0,虚轴交点为120,a2, 0,j0.91K15.375。常规根轨迹大致图形如图A-4-8(3) 4-9 绘出图4-T-3所示滞后系统的主根轨迹,并确定能使系统稳定的K值范围。 主根轨迹如图A-4-9所示。系统稳定的K值范围是0K14.38。 图A-4-9 题4-9系统主根轨迹 Kes4-10 若已知一个滞后系统的开环传递函数为GsHs,试绘制此系统的 s主根轨迹。 Kes 由GsHs知 sK10时系统的根轨迹从开环极点p10和出发,实轴,0上有根轨迹, 1主根轨迹分离点,j0;与虚轴交点j,临界K值。主根轨迹如图 22A-4-10所示。 图A-4-10 4-11上题中的开环传递函数可用下列近似公式表示(1) GsHsK1s (2) sK1sK2 (3) GsHs试绘制以上三种情况的根迹,并和GsHsss1s1s2题4-10的根轨迹进行比较,讨论采用近似式的可能性。 (1)GsHsK1s的根轨迹如图A-4-11(1)所示。 sK1s图A-4-11(1) GsHs根轨迹 sK1s2(2)GsHs s1s22122122 分离点;与虚轴交点j,j0;会合点,j0; 临界稳定K值为。根轨迹如图A-4-11(2)所示。 图A-4-11(2) GsHsK1(/2)s根轨迹 s1(/2)s2(3)GsHsK ss1分离点1,根轨迹如图A-4-11(3)所示。 2,j0图A-4-11(3) GsHsK根轨迹 ss1K。若较大,取上 ss1讨论:当较小时,且K在某一范围内时,可取近似式 K1s2述近似式误差就大,此时应取近似式。9 s1s24-12 已知控制系统的框图如图4-T-4所示,图中G1(s)G2(s)K1, (s5)(s5)s2。试绘制闭环系统特征方程的根轨迹,并加简要说明。 s系统的根轨迹如图A-4-12所示。 图A-4-12 4-13 设单位反馈系统的开环传递函数为G(s)K1(sa),确定a的值,使根轨迹2s(sa)图分别具有0,1,2个分离点,画出这三种情况根轨迹图。 当0a111时,有两个分离点,当a时,有一个分离点,当a时,没有分999离点。系统的根轨迹族如图A-4-13所示。 图A-4-13 第五章 5-1 已知单位反馈系统的开环传递函数,试绘制其开环频率特性的极坐标图 (1)Gs1 ss1解:幅频特性: A()112 相频特性: ()900arctg 列表取点并计算。 0.5 1.79 1.0 0.707 1.5 0.37 2.0 0.224 5.0 0.039 10.0 0.0095 -116.6 -135 -146.3 -153.4 -168.7 -174.2 系统的极坐标图如下: (2) Gs1 1s12s解:幅频特性: A()112142 相频特性: ()arctgarctg2 列表取点并计算。 0 1 0.2 0.91 -15.6 0.5 0.63 0.8 0.414 1.0 0.317 -108.4 2.0 0.172 -139.4 5.0 0.0195 -162.96 0 -71.6 -96.7 系统的极坐标图如下: (3) Gs1 ss12s1解:幅频特性: A()112142 相频特性: ()900arctgarctg2 列表取点并计算。 0.2 4.55 0.3 2.74 0.5 1.27 1 0.317 2 0.054 5 0.0039 -105.6 -137.6 -161 -198.4 -229.4 -253 系统的极坐标图如下: (4) Gs1 2s1s12s1解:幅频特性:A()212142 相频特性:()1800arctgarctg2 列表取点并计算。 0.2 0.25 0.3 7.86 0.5 2.52 -251.6 0.6 0.53 -261.6 0.8 0.65 -276.7 1 0.317 -288.4 22.75 13.8 -195. 6 -220.6-227.6 系统的极坐标图如下: 5-2 试绘制上题中各系统的开环对数频率特性(伯德图)。 (1)Gs1 ss1解:系统为Ⅰ型,伯德图起始斜率为-20dB/dec,在1s1处与L()=20lgK=0 相交。 1 环节的交接频率11s1,斜率下降20dB/dec,变为-40dB/dec。 s1系统的伯德图如图所示: (2) Gs1 1s12s解:伯德图起始为0dB线, 11的交接频率1s1,斜率下降20dB/dec,变为-20dB/dec。 12s21的交接频率21s1,斜率下降20dB/dec,变为-40dB/dec。 1s系统的伯德图如图所示。 (3)Gs1 ss12s1解:系统为Ⅰ型,伯德图起始斜率为-20dB/dec,其延长线在=1处与 L()=20lgK=0相交。 11的交接频率1s1,斜率下降20dB/dec,变为-40dB/dec。 12s21的交接频率21s1,斜率下降20dB/dec,变为-60dB/dec。 1s系统的伯德图如图所示。 (4) Gs1 2s1s12s解:系统为错误!未找到引用源。型,伯德图起始斜率为-40dB/dec,其延长线在=1处与L()=20lgK=0相交; 11的交接频率1s1,斜率下降20dB/dec,变为-60dB/dec。 12s21的交接频率21s1,斜率下降20dB/dec,变为-80dB/dec。 1s系统的伯德图如图所示。 5-3设单位反馈系统的开环传递函数为 试绘制系统的内奎斯特图和伯德图,并求相角裕度和增益裕度。 解:幅频特性: A()101(0.1)21(0.5)2 相频特性 ()900arctg0.1arctg0.5 0.5 17.3 -106.8 9 1.0 8.9 1.5 5.3 2.0 3.5 -146.3 3.0 1.77 5.0 0.67 -184.7 10.0 0.24 -213.7 -122.3-135.4 -163 6 错误!未找到引用源。系统的极坐标图如图所示。 令1800,解得g4.47s1。 Kg11.2,增益裕度: GM=20lgKg1.58dB。 A(g)错误!未找到引用源。伯德图起始斜率为-20dB/dec,经过点 1s1,L()20lgK20。 1s1处斜率下降为-40 dB/dec,10s1处斜率下将为-60dB/dec。 系统的伯德图如下图所示。 令A()=1得剪切频率 c4.08s1,相角裕度PM=3.94deg。 5-5 已知单位反馈系统的开环传递函数为 用MATLAB绘制系统的伯德图,确定L()0的频率c,和对应的相角(c)。 解:命令如下: >> s=tf('s'); >> G=1/((s*(1+s)^2)); >> margin(G2); 程序执行结果如上,可从图中直接读出所求值。 5-6 根据下列开环频率特性,用MATLAB绘制系统的伯德图,并用奈氏稳定判据判断系统的稳定性。 (1)G(j)H(j)解:命令如下: >> s=tf('s'); >> G=10/(s*(0.1*s+1)*(0.2*s+1)); >> margin(G); 如图,相角裕度和增益裕度都为正,系统稳定。 (2)G(j)H(j)解:命令如下: >> s=tf('s'); >> G=2/((s^2)*(0.1*s+1)*(10*s+1)); >> margin(G); 如图,增益裕度无穷大,相角裕度-83,系统不稳定。 5-7 已知最小相位系统的开环对数幅频特性的渐近线如图所示,试写出系统的开环传递函数,并汇出对应的对数相频曲线的大致图形。 (a) 解:低频段由20lgK10得,K10 =2s1处,斜率下降20dB/dec,对应惯性环节 1。 0.5s12 (j)2(0.1j1)(10j1)10 (j)(0.1j1)(0.2j1)由上可得,传递函数Gs10。 0.5s1相频特性()arctg0.5。 汇出系统的相频特性曲线如下图所示。 (b) 解:低频段斜率为-20dB/dec,对应积分环节。 1s=2s1处,斜率下降20dB/dec,对应惯性环节 K1。 0.5s1在剪切频率c2.8s1处, c10.5c221,解得K4.8 传递函数为:G(s)4.8 s(0.5s1)(c) 低频段斜率为-40dB/dec,为两个积分环节的叠加 1; s210.5s1处,斜率上升20dB/dec,对应一阶微分环节2s1; 22s1处,斜率下降20dB/dec,对应一阶惯性环节 1 0.5s1传递函数形式为:G(s)K(2s1) 2s(0.5s1)图中所示Bode图的低频段可用传递函数为K/s2来描述,则其幅频特性为K/2。取对数,得L1()20lgK20lg2。 同理,Bode图中斜率为-20dB/dec的中频段可用K1/s来描述,则其对数幅频特性为L2()20lgK120lg。由图有,L2(c)0dB,则有K1c。 再看图,由L1(1)L2(1)可解得K1c0.5 综上,系统开环传递函数为G(s)(参考李友善做法) 系统相频特性:()180arctg2arctg0.5 曲线如下: 0.5(2s1) 2s(0.5s1)5-8 设系统开环频率特性的极坐标图如图5-T-2所示,试判断闭环系统的稳定性。 (a) 解:系统开环稳定,奈氏图包围(-1,0j)点一次,P≠0,所以闭环系统不稳定。 (b) 解:正负穿越各一次,P=2(N+-N-)=0,闭环系统稳定。 (c) 闭环系统稳定。 (d) 闭环系统稳定。 2es5-9根据系统的开环传递函数G(s)H(s)绘制系统的伯德图,s(1s)(10.5s)并确定能使系统稳定之最大值范围。 解:0时,经误差修正后的伯德图如图所示。从伯德图可见系统的剪切频率 c1.15s1,在剪切频率处系统的相角为 由上式,滞后环节在剪切频频处最大率可有11.1的相角滞后,即 解得0.1686s。因此使系统稳定的最大值范围为00.1686s。 5-10 已知系统的开环传递函数为 试用伯德图方法确定系统稳定的临界增益K值。 解:由GsHsK1知两个转折频率1rad/s,21rad/s。令 s1s13s3K1,可绘制系统伯德图如图所示。 确定()180所对应的角频率g。由相频特性表达式 可得 arctg1.33g10.332g90 解出 g31.732rad/s 在伯德图中找到L(g)2.5dB,也即对数幅频特性提高2.5dB,系统将处于稳定 的临界状态。因此 20lgK2.5dBK4为闭环系统稳定的临界增益值。 35-11 根据图5-T-3中G(j)的伯德图求传递函数G(s)。 解:由L(0.1)0dB知K1; 由L(1)3dB知1是惯性环节由 1的转折频率; s1从1增大到10,L()下降约23dB,可确定斜率为20dB/dec,知系统无 其他惯性环节、或微分环节和振荡环节。 由(0.1)0和(1)83知系统有一串联纯滞后环节es。系统的开环传递函 es数为 GsHs s1由(1)arctg118083解得0.66s。可确定系统的传递函数为 e0.66s GsHss1第六章 6-1 试求图6-T-1所示超前网络和滞后网络的传递函数和伯德图。 解:(a),超前网络的传递函数为GsRCs,伯德图如图所示。 RCs1题6-1超前网络伯德图 (b),滞后网络的传递函数为Gs1,伯德图如图所示。 RCs1题6-1滞后网络伯德图 6-2 试回答下列问题,着重从物理概念说明: (1)有源校正装置与无源校正装置有何不同特点,在实现校正规律时他们的作用是否相同? (2)如果错误!未找到引用源。型系统经校正后希望成为错误!未找到引用源。型系统,应采用哪种校正规律才能满足要求,并保证系统稳定? (3)串联超前校正为什么可以改善系统的暂态性能? (4)在什么情况下加串联滞后校正可以提高系统的稳定程度? (5)若从抑制扰动对系统影响的角度考虑,最好采用哪种校正形式? 解: (1)无源校正装置的特点是简单,但要达到理想的校正效果,必须满足其输入阻抗为零,输出阻抗为无限大的条件,否则很难实现预期效果。且无源校正装置都有衰减性。而有源装置多是由直流运算放大器和无源网络构成,能够达到较理想的校正效果。 (2)采用比例-积分校正可使系统由I型转变为II型。 (3)利用串联超前校正装置在剪切频率附近提供的相位超前角,可增大系统的相角裕度 ,从而改善系统的暂态性能。 (4)当减小,相频特性()朝0方向变化且斜率较大时,加串联滞后校正可以提高系统的稳定程度。 (5)可根据扰动的性质,采用带有积分作用的串联校正,或采用复合校正。 6-3 某单位反馈系统的开环传递函数为 (1)计算校正前系统的剪切频率和相角裕度。 (2)串联传递函数为Gc(s)切频率和相角裕度。 (3)串联传递函数为Gc(s)频率和相角裕度。 (4)讨论串联超前校正、串联滞后校正的不同作用。 10s1的滞后校正装置,求校正后系统的剪切 100s10.4s1的超前校正装置,求校正后系统的剪 0.125s1解: (1) 用MATLAB求得校正前59.7(c3.88rad/s) (2)串联超前校正后70.1(c5.rad/s) (3)串联滞后校正后124(c0.0296rad/s) (4)串联超前校正装置使系统的相角裕度增大,从而降低了系统响应的超调量。与此同时,增加了系统的带宽,使系统的响应速度加快。 在本题中,串联滞后校正的作用是利用其低通滤波器特性,通过减小系统的剪切频率,提高系统的相角稳定裕度,以改善系统的稳定性和某些暂态性能。 6-4 设控制系统的开环传递函数为 (1)绘制系统的伯德图,并求相角裕度。 (2)采用传递函数为Gc(s)0.33s1的串联超前校正装置。试求校正后系 0.033s1统的相角裕度,并讨论校正后系统的性能有何改进。 解:(1)校正前3.94(c4.47rad/s), (2)加串联超前校正装置Gc(s)0.33s139.8(c16.2rad/s)后, 0.033s1 经超前校正,提高了系统的稳定裕度。 题6-4系统校正前、后伯德图 6-5 单位反馈系统的开环传递函数为 设计一串联滞后网络,使系统的相角裕度40,并保持原有的开环增益。 解:原系统的相角裕度为20。 计 算 未 校 正 系 统 中 对 应 相 角 裕 度 为 218090arctg2401555时的频率c2。 10.35s解得 c2。 当0.35s1时,令未校正系统的开环增益为20lg,故有 20lg20, 0.351.37于是选, 10 选定 211c40.088 则 10.0088。 于是,滞后校正网的开环传递函数为Gc(s)(校 验 校 正 后 系 统 的 1s0.08811.4s1。 )10s0.0088114s1相角裕度为 42 6-7 单位反馈系统如图6-T-2所示。系统的输入和输出均为转角,单位是()。对系统进行超前校正,使满足相角裕度大于45,在单位斜坡输 1入(单位是()s)下的稳态误差为,剪切频率小于7.5s1。 151解:GosKs1,超前校正装置Gcs,校正后系统的开环增益为ss1s5.7K3.0221,62(c3.02s1),满足设计要求。 s 6-8 单位反馈系统的开环传递函数为 设设计滞后校正装置以满足下列要求: (1)系统开环增益K8; (2)相角裕度40。 解:当K8时,画出未校正系统的伯德图。由于伯德曲线自1rad/s开始以-40dB/dec的斜率与零分贝线交与c1,故存在下述关系: 故 c18rad/s2.83s1。 于是未校正系统的相角裕度为 说明未校正系统是不稳定的。 计算未校正系统相频特性中对应于相角裕度为2401555时的频率c2。 由于 得0.55s1。 c2当0.55s1时,令未校正系统的开环增益为20lg,从而求出串联滞后校正 c2装置的系数。有: 于是选: 选定: 则: 于是滞后网络的传递函数为 6-9 设控制系统如图6-T-3所示,系统采用反馈校正。试用MATLAB比较校正前后系统的相角裕度和带宽。 解:未采用反馈校正时,17.9,带宽为4.826rad/s。采用反馈校正后,调整 KA2.5,使K10,此时27。带宽为7.426rad/s。可见,采用反馈校正, 可提高系统的稳定裕度,并可使带宽增大。系统反馈校正前、后伯德图如图所示。
因篇幅问题不能全部显示,请点此查看更多更全内容